
s~ —a ua lfl T EXAS (*IIV AT AUSTIN CENTER FOR CYSERICTIC ST%~~TES Its 9/1
* COWUTATIQ#IAL ANALYSIS oc ALTERNATIVE ALSORITHUS MC LABELINS——ETC IU)
APR 77 N DIAL. F SLOVEN. 0 kAflET. 0 KLINSflN N000I4.75 C—0549

UNCLAbSIFIED

~ri_U_ _UlEl_flF~UUUU!I
!flh1-_monoc

4 4
.

~~S

I .0

____________ I H

I 4

11111111 1

/

CENTER FOR
CYBERNETIC

STUDIES
~~~~ Fh~ n v t r ~~t V I

\ t j n , Tt~ x~~~ ~‘~7 i2

~ .t s ’

~ -/ t~5J

- 
~~~~~~~~~~~~~~ I I

(
~ - — - \•, ~~ ~-i-

— - I. •__,
~~~~~~

~~- - :
~~
‘: ‘- ‘ . :.

~ ~~ ‘:- 
-



3
Research Rep.rt CCS -291

A COMPUTATIONAL ANALYSIS
OF ALTERNATIVE ALGORITHMS AND

LABELING TECHNIQUES FOR JINDING
SHORTEST PATH TREES ,

by

/ (\ Robert /Dial’ C
Fred/Glover** -

~~
David /Karney~~* ~~~~~~~ “

~~~~~
•
~~~Darwin/Klingman ç~~’~

~~~‘ 

~~~~~~~~~~~ %~~~~~~~~~
-

_
_~~~~~~~~

~~~~~~ 

1 ! / ,,

*Director of Planning Methodology and Technical Support Division , UNTA/DOT ,
WashingLon , D.C.

**Professor of Management Science, University of Colorado , Boulder , CO 80302

***Director of Computer Research , Analysis , Research and Computation , Inc.,
P.O. Box 4067, Austin , TX 78765

****Professor of Operations Research and Computer Sciences , University of Texas
and Director of Computer Science Research , Center for Cybernetic Studies ,
BEB 608, Austin , TX 78712

This research was partly supported by DOT contract DOT-UT—60054 with Analysis ,
:-~ Re8eareh an4 compqt~aLion, m c , ,, P.O. Box 4O~7.Austin , TX 78765, and by ONR

/ /
Contracts) NOOOl4—75—C—~569

— NOOOl4—75—C—~6l6 ~with the Center for Cy
bernetic

Studies , Th~e University ó~
’ Texas~~ ~eproduction in whole

or in part is permitted
for any purpose of the United States Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business—Economics Building, 203E

The University of Texas -

Austin , TX 787 12 -

-

(512) 471—1821

1/ (~~ J / ç /
i_ i ”

4
‘N —_ ..—,- ~ — — •* _

~~
. ~~~~~~~ — —

~~~ — : — ‘ —



ABSTRACT

This paper examines different algorithms for calculating the shortest

path from one node to all other nodes in a network. More specifically, we seek

to advance the state—of—the--art of computer implementation technology for such

algorithms and the problems they solve by examining the effect of innovative

computer science list structures and labeling techniques on algorithmic

performance.

The study shows that the procedures examined indeed exert a powerful

influence on solution efficiency, with the identity of the best dependent upon

the topology of the network and the range of the arc distance coefficients.

The study further discloses that the shortest path algorithm previously docu-

mented as the most efficient is dominated for all problem structures by the

new methods , which are sometimes an order of magnitude faster.

~~~~~ 

T~

S ,‘

H
.

- . -~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~ - - . - . ~~~— -—-- -~~~~—-~--—
. - - - . --—-- ---- —

,
----- — — -~— 4

1.0 INTRODUCTION

Shortest and/or longest path analysis is a major anal ytical component of

numerous quantitative transportation and communication models [4 ,9,13 ,15 ,16 ,20 ,

23]. These mathematical models seek to improve efficiency and service by

increasing capa ci ty , reduc ing t ravel t ime , minimizing congestion , reducing the

cost of transportation service , improving vehicle routing , or reduc ing energy

utilization . Such models usually utilize a network to represent the trans-

por tation system (which may consist of road segments , railroad tracks, and

o ther common carr ier transpor ta tion rou tes) where one des ires to f ind a numer ical

value of the minimum t ime , cos t, distance , energy us age , etc., or maxim um

capac ity between several pairs of points In the network. The former problems

are often called shortest path problems while the latter are called longest

path problems .

Finding these values in many app lications often requires finding the

shortest or longest path from one point (called a root node) to all other points

(nodes) in the ne twork , where nodes can be road intersec t ions , railroad junction

points , a irp lane terminals , and so forth. Further , such information is often

successively required for several differen t roo t nodes and for a large number

of d ifferent criterion functions (time, distance , cost , etc.). Add itionally,

applications often involve iterative determination of the shortest or longest

paths for several different values of each criterion function ’s coef f icien ts

during sensitivity analysis. For many applications the networks are very large ,

containing several thousand nodes and arcs (segments or l inks).

The longest path problem is often applied to schedule major projects such

as: phased network capacity Improvement programs ; maintenance , overhaul , and

1~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -- -



2

leasing of large—scale transportation equipment; resource leveling ; research

and development programs ; and the market Introduction of a new production service.

The longest path problem is the central component of critical path scheduling ,

often designated by a variety of acronyms such as CPS , CPM, and PERT . Regard-

less of the name used , it is very important to realize tha t the longest path

problem is mathematically Identical to a shortest path problem. Thus , the

algorithms In this paper apply to such problems and henceforth we will use the

term shortest path problem to refer to both problems .

The above discussion Illustrates the remarkable pervasiveness and signif i-

cance of shortest path problems and the importance of algorithms to handle these

problems efficiently. Because of this , a number of algor it hms have been developed

for f inding the shor tes t pa ths fr om one node to all other nodes in large di rec ted

networks . Dreyfus [8] has written an excellent paper classif y ing the types of

algorithms and giving theoretical computational bounds for each class.

While the literature contains many shortest path algorithms , it is important

to observe that there are only a handful of genera l methods for solving shortest

path problems . Each general algorithm has within it subalgorithil7S. That is,

there are special subproblems or sets of operations tha t must be handled in

order to execute the general algorithm ; e.g., finding the minimum of a set ,

breaking a loop, reconnec t ing sub trees , carry ing out computations over the nodes

and arcs of subtrees , etc. The literature basically conta ins descriptions of

a large number of differen t ways to handle these subproblems ; unfortunatel y,

many of these alternatives are referenced in the literature as different algo-

rithms rather than as variants of the small class of general algorithms .

Historically these “algorithms” were developed and published because

researchers devised ingenious ways of handling one or more of the subproblems

in a mathematically efficient manner; i.e., the developer was able to show 

. . . - ,- -—~~~~~~.-  2. - , - . - -- --~~~~~~~~~~ ~~~~~~~



3

that his algorithm would require in the worst case fewer addition and/or comparison

operations than another algorithm .

The use of digital computers has shown , however , that algorithms which have

excellent worst case bounds are not necessarily the most efficient (in terms of

computer time) for solving real—world problems . This is partially due to the

fact that real—world problems have unique features (e.g., only a fraction of the

total number of possible arcs, special network or grid structures , small distance

coefficient values, etc.) which are often not reflected in the worst case bounds.

P~ re importantly, many of the “good” (polynomially bounded) algorithms assume

that certain information is available or updated after each iteration at no

computational expense; however , when using a digital computer to execute the

algorithm , the maintenance of such information actually requires non—trivial com-

puter storage , retrieval , and comparison operations. Therefore , mathematically

efficient algorithms do not necessarily result in efficient computer solution

procedures.

This has, consequently , spawned an important interface between mathematics

and computer science , called computer implementation technology [141. Computer

implementation technology is an essential and often neglected component of the

study of classes of algorithms. It is in fact a major practical tool for dealing

with the ubiquitous issue of computational complexity, since no analysis of

computational complexity can be truly meaningful without reference to the techno-

logy by which solution systems are implemented .

Computer implementation technology inv~. .ves the design of 
special procedures

to carry out subalgorithms of a general method efficiently on a digital computer.

Typically, this requires research to determine : (1) the kinds of information

to keep on hand for executing certain operations most effectively , (2) the kinds

of data structures in which to express this Information , and (3) the actual

— -. -~~~~-- --~~~~~~~~- .~~~~.- S.- , - ~~ ~‘. —-.- . . . . .



4

me thods for processing these data structures to make the desired information

available when it Is needed. Effective use of such research further involves

design by feedback, iterativel y amending and integrating component procedures by

reference to computational analysis and performance .

The evolution of efficient methods for network flow and shortest path

problems [1,2,3,6,9,10,11,12,13,14,22,24] uniquely demonstrates the power of

computer imp lementation technology , properly applied , to yield gains that were

not previously suspected. For example , 2000 node 7000 arc minimum cost network

flow problems that required several minutes to solve in 1968 can now be solved

in only 20 seconds, using the same general algorithm , computer , and compiler

[31. Similarly, Cilsinn and Witzgall [91 found that improved implementation

technology caused solution times for shortest path problems to drop from one

minute to slightly more than one second , using the same general shortest path

algorithm , computer , and compiler .

In the past , due to the lack of attention to develop ing systematized

principles and concepts , it was common for people to attribute variations in a

general algorithm to the skill (art) of the computer programmer. ¶~ecent1v , an

awareness has developed within many of the science disciplines , and particularly

within operations research , that the design of efficient computer programs for

solving mathematical problems is subject to the enunciation of key methodolog ical

and analytical principles , and therefore is primarily a science ra ther than an art .

The excellent study by Gilsinn and Witzga ll [9] pioneered this awareness

in application to shortest path algorithms and provides a unified structure for

describing such algorithms . The purpose of this paper is to extend this work ,

to evaluate procedures not investigated In the Gilsinn and Witzgall study, and

to further demonstrate the importance of computer imp lementation technology by

the exposition of new procedures that are superior to those previously documented . 

~~:5 .,.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -- - - .—— — 
.4



S

This paper specificall y focuses on characterizing and comparing different

algorithms for calculating the shortest paths from one node to all other nodes

in a directed network . This study shows that alternative list structures and

labeling methods indeed exert a remarkabl y powerful influence on solution

efficiency, and that the identity of the best of these methods depends upon

the topology of the network and the range of the arc length coefficients. An

additional significant result of the study is the disclosure that the new

implementation methods ~re sometimes an order of magnitude faster than the

previously fastest method.

2.0 NETWORK TERMINOLOGY AND STORAGE

This section contains formal definitions of the terms used to describe

shortest path problems and algorithms . In order to unif y the literature in

shortest path methods and their implementation , we will large ly use the terminol-

ogy of the Gilsinn and Witzgall study , departing only to make distinctions and

refinements not anticipated in previous work.

A directed network or simpl y a network G(N,A) consists of a finite set N

of nodes and a finite set A of arcs, where each arc a i A may be denoted as an

ordered pair (u ,v), referring to the fact that the arc is conceived as beg inning

at a node u ~ N and terminating at a different node v C N.

A directed path or path is a finite sequence of arcs P {a
1
, a2, .. .~~~ }

such that for each I 2, - . .n, arc a1 
begins at the end of arc a1 1

. P is

called a path from node u to node v if a
1 

starts at node u and arc a~ terminates

at node v. If a network contains a path from node u to node v , then v is called

accessible from u. A path P from u to v is called a circuit If u v. A path

for which aj # aj 
fot I # j is called arc-simpl e .

~ 

.~~~~~~~ 4 - - - -- . - . . 
— - 

4



6

Le t i(a) or i(u ,v) denote a nonnegat ive length associated with ar

a (u,v) of a network. Then we define the length of path P to be

n
d(P) X t(a

1
). Path P from one particular node to another node is called

1=1
a shortest path if d(P) is the minimum length of any path between these nodes.

A ne twork may be represented in a compute r  in several ways  and the manner

in which it is represented directly a f f e c t s  the perfo rmance of algorithms

app lied to the network. Three basic ways of representing a network with N

nodes and IA ! arcs are :

I. Use an IN x N j matrix C = (C
1~~
)~ where element C .. = R.(i ,j). This

val ue is treated as “infinity ” (in practice , some very large numbe r ) i f the

arc does not exist. This representation has two shortcomings . First , it

assumes that the network does not contain multiple arcs for the same node pair.

Second , If the network is sparse (that is , mos t C
1~ 

= or equivalently

A / N~
2 

is small) then computer storage is not effectively utilized.

Matrix represen tat ion is normally used with ma trix methods f or solv ing

shortest path problems . Such methods [15] are normall y used to find the

shortest path between all pairs of nodes simultaneously. Because of their

large s torage requiremen ts , their application is restricted to relatively

small networks and will not be considered in this paper.

2. Another way of representing a network is to list all of the arcs in

the network by keeping for each arc Its beg inning node , end ing node , and

length. This requires 3 A computer memory loca tions , which is generally

superior to the matrix representation , bu t is not well suited to the imple-

mentation of certain network processing operations. The next representation

to be described has more attractive memory requirements and is also more

amenable to processing.

A

J



7

3. The most popular way of storing a network is to use a linked list

str ucture . In this method , all of the arcs that begin at the same node are

stored together and each is represented by rec ording only its ending node and

length. A pointer Is then kept for each node (heading) which indicates the

block of computer memory locations for the arcs beginning at this node.

The se t of ar cs emana ti ng from node u is called the forward star of node u

and deno ted by FS(u); i.e., FS(u) = {(u,j) c A}. If the nodes are numbered

sequentially from 1 to IN I and the arcs are stored consecutively in memory

such that the arcs in the forward star of node i appear immediately af ter

the arcs in the forward star of node i—i , then this method , called the

forward star form , requi res  onl y j N j  + 2 I A !  u n i t s  of memory .

Throughout this paper we will assume that the network is represented in

forward star  form . In some cases we will further assume that the arcs of the

forward star of each node are ordered by ascend ing length; this will be called

a sorted forward star form. Figure 1 illustrates the storage of a network in

a sorted forward  s t a r  form . The number in the square attached to an arc of

the network diagram is the arc length .

The forward star forms are commonly used with special algorithms called

labeling methods for implementing shortest path and network flow solution

procedures. In general , labeling methods are the most widely used me thods for

industrial and governmental applications , and cons titute the primary focu s of

this paper because such methods are especially effect ive in application to

large sparse networks . Next we define some terms commonly used in describing

labeling algorithms .

3.0 TRE E TERNI NOLOGY AND LABELIN G TECHNJ~~UES

In the context of directed networks , a rooted tree , or simply a tree , is

a ne twork T(NTIAT
) together with a node r (called the root node), such that

each node of N1, except r , is accessible from r by a unique arc-simp le pa th

In T. 

—. —. - ~~ ~~~~~~~~~~~ - . -~ 
~~~~~~~~~~~~ 

— ---—---—

4 4
ENDING

NOD E POINTER NODE I

1 1~~ _ _

3
2 3 } —i t s 4

5 J i~~~~~~i~~~~
5

_ _

4

1~ 6_ 8

FIG. 1 - SORTED FORWARD STA R FORM

A rooted tree T is called a minimum tree or shor test path tree of a

larger ne twork G(N ,A) If T contains all nodes of C accessible from r , and if

for each node v in N1, the unique path P from r to v is a shortest path from

r to v in the network C.

Labeling algorithms typically start with a t ree , T, consis ting onl y of

the root node r and seek to enlarge and modify T until it becomes a shortest

path tree of a larger network C. Thus , an important computer implementation

component of such algorithms involves properly handl ing T and storing C.

. - —
- ~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~~~ —~~~— - - 

- —- - - --- - —— - - —.—— —~~~~—- — -



9

A common way of represent ing a tree in a computer  i~ to think of the root

node as the hi ghest node in the tree and all the other nodes hanging below the

root. The tree is then represented by keeping a pointer list which contains

for  each node w r in the tree , the starting node v of the single arc in the

tree terminating at w. This upward poin ter Is called the predecessor of node

w and will be deno ted by p(w). Further , node w is called an immediate successor

of node v. For convenience , we wil l  assume tha t the pred ecessor of the roo t ,

p(r), Is zero. FIgure 2 illustra tes a tree roo ted at node 1, the predecessors

of the nodes , and other functions to be described subsequently . The predecessor

of a node is identified in the p array . For example , the precedessor of node

16 is node 5.

Most labeling algori thms keep ano ther list indexed by the node numbers and

associated with the tree 1. This list contains for each node v a label d(v),

whose value is the length of the unique path from r to v in T. (In some

implementat ions, d(v) is not always the correct length but an overestimate

that gradually converges to the correct length.) Henceforth d(v) will be

called the node potential of node v. Nodes not in T may or may not be labeled

with a node potential value ; usually they are given the label ~, indicat ing

that they are not yet reached by the tree . The root r has a node potentLd

of zero .

In Figure 2 the number in the square on each arc indicates the length of

J the arc. The entries in the d array identify the length of the unique path

from the root to each node. Figure 2 Illustrates additional tree informa t ion

expressed as node functions , which will be used in the comp ute r imp lemen ta t ion

procedures to be discussed subsequently.

The first of these functions , the thread function [1 ,12], is denoted by

t (x). This function is a downward pointer through the tree . As illustrated in

~

. - - . - . -

~

--

~

L- - - . —. — . .——— — - —  — - 
d



10

Predecessor p (x)

Node potentia l d(x)

Thread t (x )

Reverse t hread rt (x)

Depth dh(x)

Cardinalit y c (x)

Last node in subtree f (x)

—~~~~~/ 1 NODE P d t rt dh c
8I

/
i 1 0 0 2 1 5 0 17 15

2 1 1 4 1 1 9 6
‘ 2  3 1 8 1 0 6 1 7 1 5/ 4 2 4 5 2 2 6 1 73 2 ‘ 4

2 ./ 5 4 6 1 6 4 3 2 1 6
4 9 6 ‘~~~ io 11’  6 2 3 3 9 2 1 6

/ / 7 8 8 17 8 4 1 7/ ~_
.0~~~~ / / /

/ 2  1 \ / , ~
‘ 3 6 1I 2  9~ 

8 4 5 7 1 6 3 3 1 7
,\ / / 1  \ 9  2 3 6 1 7 2 1 9

5 8 \ 1 3  14 12 J 5 \10 3 1 2 1 3  3 2 314

~11 3 9 1 2 14 2 3 1 5

,
1 4 1 / 

~~~~
.._

‘— ‘ 12 11 11 15 11 3 1 12
2 13 10 15 14 10 3 113

14 10 18 11 13 3 1 14
116 ‘1 ~ 17 15 11 18 1 12 3 1 15

16 5 10 8 5 4 1 16
‘— ._ J ~~~ ~~~.— ~~~~~~~~ 17 8 7 9 7 4 1 17

FIG. 2 - TRE E LA B ELING TEC HNIQUES

.4

11

Figure 2 by the dotted line , func t ion t may he thoug ht of as a connecting link

(thread) which passes through each node exactly once in a top to bottom , left

to right seq uence , starting from the root node. For example , in Fi gure 2,

t(1) = 2, t(2) = 4, t (4) = 5 , t (5) = 16 , t (16) = 8 , etc.

Letting n denote the number of nodes in T (NT,AT).
the function t satisfies

the following inductive characteristics:

a) The set {r, t (r) , t
2(r) , . .. , t’~~~(r).} is precisely the set of nodes

of the rooted tree , where by convention t
2(r) = t (t (r)) , t

3
= t (t2(r)) , etc.

The nodes r , t(r), ..., tk_l (r) will be called the antecedents of node t
k (r) .

b) For each node I other than node t°~~~(r) , t(i) is one of the nodes such

that p(t(i)) = I, if such nodes exist. Otherwise , let x denote the firs t node

in the predecessor path of i to the root which has an immediate successor y

and y is not an antecedent of node i. In this case , t(i) = y.

c) t~~(r) = r; tha t is , the “last node ” of the tree threads back to the

root node .

The reverse thread f unc tion , rt(x), is simply a po in ter wh ich poin ts in

the reverse order of the thread . That Is, if t (x) = y , then rt(y) = x. Figure

2 also lis ts the reverse thread function values.

The depth func tion , dh (x) , indicates the number of nodes in the predecessor

path of node x to the root , not counting the root node itself. If one con-

ceives of the nodes in the tree as arranged in levels where the root is at

level zero and all nodes “one node away from” the roo t are a t level one , etc.,

then the depth function simply indica tes the level of a node in the tree.

(See Figure 2.)

The cardinality function , c (x) , specifies the number of nodes contained

in the aubtree associated with node x in the t ree . By the nodes in the subtree

- .

~

-. . - - - . - j ~ — . T — __
1
__

~

12

a s s o ci a t e d w i t h node x , we mean the set of a l l nodes w E N
T

such tha t t h e

predecessor pa th f rom w to the root c o n t ain s x. (See F i g u r e 2 .)

The last node in a subtree f un c t i o n , f (x) , s p e c i f i e s t ha t l a s t node in

the sub t ree of x tha t is encountered when t ravers ing the nodes of t h i s s u ht r e e

in “ th read o rde r . ” More p r e c i s e l y , f (x) y where y is the un i que node in the

sub t ree of x such tha t t (y) is not also a node in the sub t ree of x . (See

Figure 2.)

Note tha t both the domain and the range of each of the above discre te

f u n c t i o n s consist of the set of nodes and thus are independent of the number

of arcs . Since I N t is the maximum number of nodes t h a t could be in T , a on e

d imensional array of size IN I , called a node length array, is a l loca ted to

each f u n c t i o n dur ing computer implementa t ion . The procedures fo r u p d a t i n g

the values of the func t ions when the tree is reconf i gured w il l be de t a i l ed

subsequent ly .

4 . 0 SHORTEST PATH PROBLEM AND LABELING METHODS

By means of the foregoing terminology , the problem of finding the shortest

paths from a given node r to all o the r nodes in network G (N , A) may be s ta ted

as t h a t of f i n d i n g a minimum tree T(N T, A.r) of C rooted at node r .

Labeling methods f o r compu t ing such a min imum t ree have been divide’~ in to

two general classes , label—se tting and label—correcting methods . Both methods

t y p i c a l l y s t a r t w i t h a tree T (N T, A..I.) such that NT
{r} and AT

= 0. A l a b e l —

setting method then augments N
T and A.~. respectively, by one node v E N and one

arc (u , v) C A at each iteration in such a manne r t h a t u c N T . v L N1., and the

un ique path from r to v in T is a shortest path. A label— setting method ter—

minates when all arcs in A which have their starting endpoints in NT
also have

the i r ending endpo in ts in N
T
.

-- — —-- — . .-— -..- — rc~t~~~t - - . . - ~ -r “l ’ s - —

13

A label—correcting method , on the other hand , always exchanges , augments ,

or updates arcs in A
T

in a manner that rep laces or shortens the unique path

f r o m r to v in T , but does not g uar a nt e e t h a t the new pat h is a shortest path

(until termination occurs). Using the notation defined in the previous section ,

we now give a precise descripti on of each of these general methods.

Genera l_L a b el - S et t i~~~ Method

1. I n i t i a l i z e a t ree T(NT,AT) such that NT
= {r} and A.1. = 0. Further ,

set p(t): = 0 , t c N; d(t) : = ~~~~, t ~~ N — {r}; and d(r): = 0.

(The notation a: = h sets a equal to b.)

2. Let S = ((u ,v) : u c N
T

; v E N — NT, (u ,v) c A}. If S = 0, go to

step 4. Otherwise proceed.

3. Let d(u) + i(u,v) = minimum (d(p) 4 9(p,q)). Redefine
(p ,q)cS

N
T
: N

T u {v}

A
T
: A.r U {(u,v)}

= u

d (v) : = d (u) + Q (u ,v)

and repeat step 2.

4 . Stop . T(N
T,

A
T
) Is a minimum tree and for each node v c N , d(v) is

the l e n g t h of a s h o r t e s t p a t h from r to v r .

I t is w o r t h no t i ng t ha t a l a b e l — s et t i n g method onl y works f o r n o n n e g a t i v e

arc lengths. A label—correcting method , however , works for negative arc lengths

as long as there are no circuits of negative length in the ne twork G (N ,A) .

General Label-Co r r e c t in ~ M ethod

1. initia lIze a t ree T(N
11A1

) such that NT
= ~r } and AT

= 0. F u r t h e r ,

set p (t) : 0, t £ N; d (r) : 0; and d (t) : = ~~~~, t ~ N — {r) .

—- - -- ~~~~~~~~ ~~~~~~~~~~~~~~~ . ,- - ~~~~~~~~~~. - — — -—
-,

.4

14

2. Go to step 4 If there does not exist an arc (u,v) c A such that

d (u) + 9 (u ,v) < d(v). Otherwise , f o r such an a r c , r e d e f i n e

N
T
: = N

T
U f v)

AT
: A

T
— ((s,v) C A

T
) U { (u , v) }

p (v) : = u

d (v) : = d (u) + R. (u , v)

3. Repeat step 2.

4. Stop. T(N
T
,A
T
) Is a minimum tree and for each node v c N , d (v) is

the leng th of a shortest path from r to v r. Further , if a

shor test path from r to v exists (i.e. , if p (v) ~ 0), then it may

be construc ted by successivel y exam ining the predecessors of v

un til the root node r is encountered .

5.0 EXPERIMENTAL DESIGN

Al ternative implementation methods are evaluated in this study by solving

a diverse set of randomly generated shortest path problems using the same

compu ter (a CDC 6600), the same compiler (a FORTRAN RUN comp i l e r) , and executing

the codes during time periods when the demand for computer use was comparable.

Fur ther , all of the codes were implemented by the same systems analyst and no

• attemp t was made to exploit any of the unique hardware characteristics of the

CDC 6600.

Even w i t h these sa feguards , minor d i f f e r e n c e s between the s o l u t i on t imes

of any two codes fo r a single test run of each must be regarded of ques t ionab le

s i g n i f i c a n c e . For th is reason , each tes t problem was solved 100 t imes (i . e . ,

for 100 differen t roots) and the average solution time reported . Each code

makes use of a real—time clock routine supplied by CDC . This routine can be

employed using a FORTRAN subroutine call and is generally accurate to two

decimal places. The reported times include only the elapsed time after input

- ~~~~~~
— —.

--- .~~~~~~. . — —‘ .- . .~~ - . — - - -

15

of the shortest path problem and prior to output of its solution . This includes

the time required to initialize the function arrays.

The problem set consists of shortest path problems from two distinct

topolog ical groups. One set consists of rectangular grid networks . A p x q

rec tangular grid network may be envisioned as having its nodes arranged in p

parallel rows each containing q nodes. Each node connects by arcs only to the

four nodes (if present) to its right and left and above and below. Thus a

p x q grid network has pq nodes and 4 pq — 2p - 2q arcs. It is important to

no te , however , that the arc lengths are randomly generated. Thus , arc leng ths

ar€ not necessarily symmetric and the triangle inequali ty may not hold .

The grid network test problems all have 2500 nodes with rectangularities

of 50 x 50 , 25 x 100, 10 x 250 , and 5 x 500. These problems were generated

using a unifrom probability distribution with two unique distance ranges for

the arc lengths ; the first range of arc lengths lies between 1 and 100 and the

second between 1 and 10000. Table 1 describes all of these grid problems and

contains solution times on the alternative implementations to be discussed

subsequently .

The second topologically distinct set of problems consists of random

networks. A random network is one in which two nodes are selected randomly

to form a new arc to add to the network. The nodes are selected using a uniform

probability distribution , subject to the restrictions that the two nodes are not

the same and arcs are not allowed to be duplicated . The random network test

problems all have 1000 nodes and contain either 5000, 10000, 15000, 20000,

25000, or 30000 arcs. For each of these problem sizes , two problems were

generated, one with arc lengths between 1 and 200 and the other with arc lengths

between 1 and 10000. Again the arc lengths were randomly selected using a

~

a__ -.- - —

- ----~~~~~~~ ---~~

16

— I, ., 11.1 ~~~ C~4 ~O ~.O ~~

~~

p.. .3 r-. .-4
.3 -~

c..~

— ~~ r-1

r.. 1-. 00 C•-4 0 ~ Q’. ..~m ‘~~
.3 F C~4 00

-~ c.~ ~~

0 00 .3 — — r-~

00 — -3 0% 0 ‘~~.3 -3 ~~ -3

C

~~ 0 00 ~~ 0 ~~
or: -

~

~g

~~~~~~~~~

I
I’

.p~ 1J

Ii 0 0 0 0 0
5 0 0 iI•~ 0 0 0 in 0

— in — in
00 ~.C

a o .~ o
4J in e~i -4 ~~ ~~ 4’.4 .-4 in
U

- - - — - , -  —. -~~~~ --— . .
. .

~- . .~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ T~T .r l  .:L%l’~~~~. - . 
-. . . 

~~~~~ ~~~ —


- -- -~~~ —~~~~

17

Table I I

SOLUTION TIME S IN SECONDS ON A CDC 6600 FOR RANDOM NETW ORK S
(SECS/ TREE , AVERAGED FOR 100 TREES)

Arc
Leng th

Nodes Arcs Range Cl C2 C3 C4 CS Sl S2 S3 S4

1000 5000 1-200 .15 .13 .42 .28 .20 .21 .23 DNR .34

1000 10000 1—200 .31 .28 .63 .42 .35 .33 .32 DNR .50

1000 15000 1—200 .44 .43 .72 .58 .47 .42 .39 DNR .61

1000 20000 1—200 .59 .59 .90 .70 .61 .52 .4 7 DNR .72

1000 25000 1—200 .80 .80 1.17 .88 .77 .62 .55 DNR .81

1000 30000 1—200 .91 .91 1.31 1.01 .90 .70 .62 DNR .90

1000 5000 1—10000 .16 .13 .43 .28 .20 .50 .53 .30 .34

1000 10000 1—10000 .32 .29 .61 .43 .35 .51 .45 .40 .47

1000 15000 1—10000 .43 .43 .71 .59 .46 .59 .51 .49 .58

1000 20000 1—10000 .65 .64 .89 .71 .63 .68 .59 .62 .66

1000 25000 1—1000 0 .85 .85 1.21 .90 .79 .76 .61 .69 .70

1000 30000 1—10000 .97 .96 1.32 1.03 .91 .88 .70 .86 .81

DNR——Did not run .

- . ..
. - .~

~
—

— .1 —— - - .— — - ———_________________________ 4

18

uniform probab ility distribution. Table II contains the computational results

on t h e random ne twork p rob lems .

To provide researchers with reproducible benchmarks , the appendix contains

FORTRA N l i s t i n g s of the problem genera tors and the two c o m p u t e r codes found to

be the best in th i s s t u d y.

6.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL -CORRECTING _METHOD

In th is section we discuss a sequence of implementations of the general

l a b e l — c o r r e c t i n g a lgo ri t hm which successively u t i l i z e more and more i n f o r m a t i o n

(as embodied in the node f u n c t i o n s) to determine the e f f e c t of t h i s i n f o r m a t i o n

on the efficiency of the algorithm . The merits of these alternative implementa-

tions ar e then eval ua ted by solving the test problems.

6.1 Imj~~~mentations Using Only p and d Functions

Step 2 of the general label—correcting method involves finding any arc a

which can be added to (or updated in) the tree with a resultant decrease in the

node potnetial of its ending node . One of the fundamental subalgorithms of

th is general method involves searching for such an arc in an intelligent manner.

Several observations have been made In the literature regarding this search.

The most rudimentary observation is that if the arcs are sequentiall y exam ined ,

it is not necessary to examine any arc (u,v) C A whose beginning node has an

infinite node potential since d(u) + 9.(u,v) < d(v) will never be satisfied for

nonnegative arc lengths.

This observation extends quite naturally as follows. If each arc (u,v) c

FS(u) has been examined and founu to satisf y the condition d(u) + 2(u,v) � d(v),

then It is unnecessary to re—examine these arcs until the node potential of u

decreases. This observation is one of the primary motivating factors for

storing the network in a forward star form . As will be seen , the order in which

- . ~~
. . . — —— — -—-—--.

19

forwa rd stars of nodes are examined plays a major role in the efficiency o~ the

algori thm.

Based on the p reced ing obse rva t ion , it is convenient to keep a sequence

list of nodes whose node potentials have decreased since their forward stars

were l as t examined . That is , nodes are added to the sequence l i s t wheneve r t h e i r

node potentials are decreased and deleted from the list upon examining their

forward stars . By not allowing a node to appear more than once on this list ,

It is possible to restrict the size of this list to a node length array . One

simple way to guarantee that a node is not duplicated on the sequence list is

to complement the forward star pointer of the node when it is added to (or

dele ted from) the list. Using this technique , the sign of a node ’s fo rward

s t a r p o i n t e r is checked before adding the node to the sequence l i s t . I f i t s

s ign Is posi t ive , the node is added to the l i s t ; o the rwise , it is alread y on

the list.

The sequence l ist can be managed in a variety of ways . in particular , if

the forward stars are examined in the order in which their identif y ing nodes

- are p laced on the sequence list , the list is said to be managed in a FIFO

(First—In , First—out) manner; if the forward star of the latest node added to

the l ist is examined before that of a node placed on the list previously, it is

said to be managed in a LIFO (Last—in , First-out) manner. Yet another way to

manage the sequence l i s t is to p ick the node at the f r o n t of the list to examine

next as in the FIFO procedure , but to add nodes at either the front or the back

of the list; that is , to handle the sequence list as a two-wa’~ sequence list

add ing to either end but always deleting from the front . As will be seen , the

way I n which the sequence l i s t is managed has major ramifications for the effi-

ciency of the al gorithm . We now describe In detail the codes whose solution

times are indicated for grid networks and random networks in Tables 1 and Ii.

—~~~~~~~~~~~~ — . - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~- — -
.
-

- ~~~~~~~~~~~~~~~~~~~~~~

20

Code Cl employ s a F 1FO sequence l i st , and the predecessor and node potential

f u n c t i o n s . The l i s t is processed by us ing two p o i n t e r s , s and e , where s p o i n t s

to the entry whose forward star is to be examined next and e is the position of

the last node added.

Code C2 utilizes the predecessor and node potential functions and a two—way

sequence list. The two—way sequence list is imp l emented as suggested by Pape [22].

That is , the sequence list is a node length array, ca l l e d CL , identified by node

numbers , such that

— l if node x was previously on the list
but is no longer on the list

0 if node x has never been on the list
C L (x) =

+y if node x is on the list and y is the
nex t node of the l ist

+~~ if node x is on the list and x is the
last node on the l i s t

In add ition , the star t and end poin ters , s and e , are kept. (See the listing

of code C2 in the appendix.)

The solution times in Table II are very similar for codes Cl and C2. Thus

f or random ne tworks , the management of the sequence list does not seem to affect

so lu t ion speed. The r e su l t s in Table I , on the o the r hand , show that this is

not true for grid networks . Code C2 is dramaticall y superior in this ; case .

Th is surpr ising difference can be explained as follows . The minimum tree

and also most of the intermediate trees are very narrow and deep in grid networks ,

due to the fact that only one or two tree arcs emanate from each node. This

causes the subtree of an arbitrary node v , in general , to exh ibit the “narrow

and deep ” proper ty. Moreover , if the node potential of node v Is decreased by

an amount 6 then the node potentials of all, nodes in the suhtree of v mus t

ultimatel y be decreased by 6 (unless the subtree later becomes restructured ,

— . - -—- -
:~~~~~~~~

— — -
~~~

—-—
~~

.
~~

-- 
~



in which case some node potentials wIll decrease by an even greater amount).

To illustrate , suppose arc (8,3) of Figure 2 is to he added to the t ree and

d(3) Is set to d(8) + 2 ( 8 , 3) = 5 + 1 = 6 (hence d(3) Is decreased by 2). Then

the length of the unique path from the root to each node in the suhtree of node

3 is red uced . Conseq uen t ly , the node potentials in this suhtree should he

decreased.

The FIFO sequence list postpones updating these node potentials since node v

is added to the back of the list. In contrast , the two—way sequence list adds

v to the front of the list (if it is not already on the list). Thus , loosely

speaking, nodes in the subtree of v tend to be updated before other nodes are

examined.

Th is up dating sequence helps to eliminate unnecessary node potential

corrections that are dominated by the 6 correction that should be transmitted

through the subtree. That is , an arc (p,q) may satisf y the condition

d ( p )  + ~.(p,q) < d(q) only because d(q) has not been reduced by 6. The occurrence

of such unnecessary corrections can have a cumulativel y deleterious effect.

In part icular , each one causes a new node to he added to the sequence list

wh ich has an “erroneous ” (i.e., dominated) node potential value . Each t ime such

a node is then selected from the list (if it has not in the meantime received

a ‘ corrected ’ node potential value), a correspond ing ly erroneous va l ue is trans-

mitted to still other nodes. The difficulties of the process are thus perpetuated .

The effects of generating and transmitting erroneous node potentials , just

discus sed , raise the question of whether a label—correcting method can he imple-

mented by mea ns o f more sophisticated list structures and processing techn iques

with .i net gaIn in computational efficiency . We now consider implementations

desi gned to respond to this question .

——- - —~.-----—. - — -.- ~~~~~~~~~~~~~~~~ —.— -- — ~~~~~~~~~~~ -
.

-- - ..—--_---_-- .fl— - - — - - 
— —  — . _________________



22

6.2 Imp lementations_Usin~~ p~~~~ t c and f Funct ions

The thread function , as observed earlier , provides an efficient way of

locating each node in the subtree of any node in N
1
. Thus , if the node po ntia l

of node v is decreased by 6, the thread function can he used to update all node

potentials in node v ’s subtree. As shown in [IJ, the last node and cardinality

functions can be used efficientl y to update t .

We have de signed two codes , C3 and C4 , to t es t  t he m a j o r  i m p l e me n t a t i o n

a l t e r n a t i v e s .  Code C3 uses the p, d , t , c , and f functions as follows . The

code starts with N
t 

= (r root} , A
t 

= 0 and initializes p(v) 0, v ~ N ;

t(r) = r; t(v) = 0, v ~ N — {r}; d(r) 0; d(v) = c” , v N — ~r~~; c( r ) 1 ;

c ( v )  = 0, v c N — fr}; f(r) = r; f(v) 0, v r N - 
~r}. Code C3 also uses a

logical node array eta indicate if a node ’s lot-wa rd star requires scanning . In

particular , f or v N , e(v) = I if the node potential of v has changed since v

was last examined and e(v) = 0, othe rwise . This a r r ~~v i- ~ initialized by setting

e(r) = 1 and e(v) 0, v N — {r}. Using e , the al gorithm then searches for

an ar (u,v) r A such that 6 = — d ( u )  + d(v) — . (u ,v) 0, whereupon d(v) is

reset to d(v): = d ( v )  — 6 and the node potentials t t  i l l  other nodes in the

subtree of node v are decremented by 6. The a l gorithm termina te s when e(v) 0,

v £ N. (Since each e l e m e n t  of e has onl y two states , it is not necessary to

use a separate computer array for this function.)

The p, t , c , and f funcli ~ns are updated by the following set of operations

where (u , v)  denotes the  arc to be added to A’.. (The reader  may find it helpful

to p e r f o r m  these ope ra t ions  using Figure  2 and l e t t i n g  (u , v)  = (8,3).)

S tep 1: IdentIfy the node y such that t(y ) = v. Then set t(y): = t (f(v)).

(Note that the ‘identification of y may be efficientl y done by flrs letting

y ’ p(v). Second , if t(y ’) — v then y y ’ and t he  process stops . Otherwise ,

jet y ’ f(t (y’)) and repeat the second step.)

—
~~~--- . - — - -—-----


23

Step 2: Identify the first node x (lowest node) common to the predecessor

paths for u to r and v to r. Then set c(i): = c(i) + c(v) for each node i in

the predecessor path from u t o x (excluding node x) and set c(i): = c(i) — c(v)

for each node I in the predecessor path from p(v) to x (excluding node x).

Step 3: Let w — p(t(f(v)). If w = 0, then set w = r. Set f(i) = y

(i.e., the node y determined in step 1) for those nodes i on the predecessor

path from p(v) to w, excluding w itself if p(t(f(v)) ~ 0.

Step 4: Set p(v): — u.

Step 5: Set t(f(v)): t(u).

Step 6: Set t(u): = v.

The second code , C4 , based on the more sophisticated node functions is a

simple modification of C3 in which the e array is replaced wit h a FIFO sequenc e

list.

6.3 A Primal Simplex Method Interpretation of the Label—Correcting Al gorithm

The preceding implementations of the general label—correcting algorithm

may be viewed as specialized variants of the primal simplex al gorithm where

the basic variables correspond to the arcs in A.,~, augmented by art
ificial arcs

which start at the root r and end at node I for each i c N — N
T
such that

2.(r,i) ~~~. The Interpretation is especially direct for the codes C3 and C4,

which insure that the node potentials always satisfy comp lementary slackness ,

i.e. , —d(u) + d (v) ~(u,v) , (u ,v) c A
T
and —d(r) + d (i) = 2,.(r,i), i £ N — N

T
.

Extending this interpretation , the process of selecting an improving arc (i,j)

corresponds to searching for an arc which violates dual feasibility. The process

of adding such an arc (t ,s) to NT and deleting
an arc (p(s),s) from A.~ is

equivalent to a simplex basis exchange . (Note that if p(s) 0 then arc (p(s),s)

corresponds to an artificial arc and is not a member of A.1..) The update of the

~~~~~~~~~~~~~~~~ ~ i~~~~r~’~~~ ~~~~~~~~~~~~ ~
- - ~~~~~~~~



24

node potentials after pert orming this basis exchange simpl y maintains ‘omple—

me ntarv slackness.

From t h i s  po in t  of v iew , the  rep l a c e m e n t  of t h e  e array of C3 with the

FIFO sequence of C4 corresponds simp ly to the use of different pivot selection

rules . Tables I and II show that this change of p ivo t  s e l e c t i o n  s t r a t e g y  s t r i c t l y

improves solution time .

The p rev ious  codes Cl and C2 , on the  o t h e r  hand , cor respond  to a d e f e r r e d

u p d a t i n g  ve r s ion  of the primal simplex algorithm in the sense that a basis

exchange is performed each t ime an arc is added to AT, but the full set of

updated node potentials in a suhtree are not i mmedia tely determined. In  p a r t i c u l a r ,

codes Cl and C2 differ from the codes C3 and C4 by requiring that complementary

slackness he maintained onl y “lo call y” rather than globall y . The times in

Tables I and 11 demonstrate that it is not necessarily beneficial to maintain

comp lementary slackness after eac~ iteration. Code C2 , w h i l e postponing the

upd a te  of the  dual variable (node potential) values , appears to ba l a n ce the

d i s t  r t i o n  caused b y u s i n g  l oca l l y u p d a t e d  dual  v a r i a b l e  values with the work

re’iuired to maintain globally updated values.

6 . 4  A d d i t i o n a l ~~p iementatlons Using_Alternative _ Pivo t Strate~~ies

A.s a r e s u l t  of t he  i n t e r p r e t a t i o n s  of these codes as v a r i a n t s  et the primal

s i m p l e x  method , we undertook to test variations of C3 and C4 tha t used other

types of p ivot strateg ies. First , code C4 was modifi ed by scanning the torward

star of a node removed from the FIFO list multiple times. Each t ime the forward

star is scanned , the arc violating dual feasibility by the largest amount is

selected for the basis exchange . This pivo t criterion was tested because it

has been shown in other network h o w  applications to be more ef t ect ive than

simp ly p ivoting the arcs In a “random ” order  [5 ,10 ,11 ,241. The times for this

var iant of C4 are not shown in Tables I and II because , contrar y to the results

—-. -
~~ - - -i’- 

—
~~~~~~~~~ 

-
~
~—

25

or t her t vpes of network flow p rob I ems , t h e sd it 1) t l m t s wt r c u n i f i) r m l v

1O ~ t o 15% s l o w e r t h a n f o r t h e ‘‘unordered ’ s e l e c t i on p r o c e d u re .

F o l l o w i n g t h i s , we t e s t ed a number o h o t h e r m o r e sop i i i st i c at e d p i v o t

criteria. Mulvey [21 has shown that an excel1en~ p ivo t criteri on for large

transportation and transshi pment problems derives from t he use of an arc

cand:date list. Mulvev ’s approach involves two parameters r and s, where r

specities the maximum number of arcs on t h e list and s specifies the maximum

number of p ivots to be made before revising the elements on the list. The

candidate list is created by sequentially examining the forward star of nodes

with an e ‘value of 1 in code C3 and selecting arc (u,v) in erich forward star

wh ich violates —d(u) + d(v) < •. (u,v) by the largest amount (if one exists)

for inclusion on the list (accumulating at most r such arcs). Each time the

list is revised , the search for arcs is initiated at the node following the

node where the search was stopped when building the p r e v i o u s l i s t . I f r

e l i g i b l e arcs canno t be f o u n d , the s i ze of r is r educed to the number a c t u a l l y

e n c o u n t e r e d .

The c a n d i d a t e l i s t app roach was i nc o r p o r a t e d i n t o code C3 and t e s t e d ~or

severa l d i f f e r e n t l i s t s izes . The ou tcome , a g a i n s u r p r i s i n g ly , y i e l d e d soluti on

t imes i n f e r i o r to those of code C4.

We then desi gned a n o t h e r v a r i an t of t he c a n d i d a t ’ ’ l i s t ap p r o .n ’ h , w h i c h

made use of t he sequence 1 1st of code ‘4. In p a r t j o u l r i r , the i r s t r e dt - s

were t a k e n f rom the sequence l i s t to form a node oirtd ida t, list. Sev eral

different strategies were tested for pick ing nodes o t f t h i s c i n d i d ; i t e l i s t .

F i r s t , the nodes were selected In I n c r e a s i n g o r der of h i - i r ca rdina l i t v I iiit ct I t O

va l ue , rind the forward s tar of the sel ect ed node was oc

The logic behind t h i s pivot selec tion s t r a t e gy i s th at nodes with l .i r~-.er

card ina lity function values are likely t o be c l o s e s t t o t h e r o o t node , in d i~~a t h o g

~.r.’— rflVt .. .4 * *- . — -— —— —,_.

- ~~~~~~~
~ tt i e r tu i t I ~-t

~ ~~ €-~~

- - h e r hCtf lR
t i m i % h 1 1

ist~~~
t t r ac t t ~~~

0t S
~

‘

o r d er ~ t thi I r

li i’ r’. ‘ . red ’~~~ ~~~~~

~ but flO1’
~~ 1t (I~~” ~~

t ~~5t ~~~ ‘

- ~eS we r e ‘
-; t lt ~~~~

(~‘R
~ ~0

ted f o r ~ t r~
jc t t ~d ~~~~~~~

i t t) ~~~
(1 ~

0~ de p ot Cf lt Ial ~ a1u~~
0g Iy

~~~ 
~~ I’1 ~ 

~~~ 
node pO~~~ °~

I a1~
ar~

1

The50 rtSUX ~~
s~

ro

I t-s us m R ~~ 0h’~
lv ~~~~

- / p~ ’ O r O 511h~~~ ~
jog

- ~1 pu r P0~~~
5jmp 1~~~

‘ ‘~

~0 l —c e~~~~ ~ b R
codt ’

di ! , tl t~~
imP 1

-
- jer Ia

-

- - - with thi 5 mm1~
~~~ ‘~~ 0 l - ~ 

ed h ’

- ~ 
h& CVC

~ 
~ 

•
~~~ ~~~ ~~ 

r

cl°~ ’ ‘ , ,1~~
,

co - riO° ¶1
to tIn V t

I ex metl~0d wbt r
~

- ~
j ma ~

- ~~ the S (u f l~ ~ ~ O il 4 rnt r e
m e f lt a t i d f l

~l
dcp tl’, dl’.

,~~~ 5 in be -

t_ t 11/ - t 5 .
sO tl’reau t

~
t t\w50 ~~‘

- i t~
t r o C h em-

the reVE’Y’
~ ~

ti°~
is t Sh(,rt ‘~~t ~

%-~
j A j mp lem€ °

. ~ e t t log ‘

rok~~t
0A)

00~~ r1y ~~~~
-

to ‘

~~~~~~~~
re” ~~~~~~~ - ~ 0th ~ ~ -

~

than the 

~~ 
the 50~ ~ 

in~ 
0

4 t , -~~~
‘ , - 

-

(This ~~9 °°~~ 

~~i t  at  ~~~~~ i n4  ~ 
t Ii 0~~c ~ 

01

b ~ 
~~~~~~~~~~~~~ 

€ ~ ‘m~

based ~~
ri vt ~

thrt

110 ~

in

The imp lementa
tons

at jon5,
~~~~~~~ 

the 
- ~~~~~ 

~~~~~~~~~ 
t O

leme~ Ii ~~ ~

e ~tece~~ °R
1.

The r t irid
th

. -i sut,tt~~~
.

a11
Potential:

a~d~~ d • ~t ,
rind 4

’o

rep l3 °~ impiement
ed l lS %O R P ’

— r t (V) =
—

F irst,
a code

CS waS

0 ~
£ ~~

t (t)
rt (r) ‘

~~

~~~
.

that 9
(v) • 

~~~. dh( ’~ 
= 0,

initialized
such

o. d(v) = (u , V)
50ch th it

~~
. ~ (r) •

() Cr i t ° an ~~ tt 0ode V

v £ ~~
— (r I ’

list ~~
1

i”eence
F1F~ ~~~ ii -lv

c5 uses a
> 0

whereIj pofl a
-

(u v) ‘ cc l tst The

6 -d(u) ~
—

~add~d ~~~~~
th° sequen

- d(V~
+ 1.

b~~
6 a~ ,ment~~

y
I
. - 4 (r emente

. ~~~~~ ~~
inc t~-

t j~
sU

de i~
to ~

dep th ~
each ~~

s when the seqt~
em
~~

list -

~ 1g o nt t h m teT~~~~
te

- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ I~~ - ~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~
-

26

an Increased attractiveness for being examined first. Several different list

sties we r e t e s t ed , hu t none reduced s o l u t i o n times . Similarl y, tests were

c o n d u c t e d f o r the s t r a t e g y of s e l e c t i n g the nodes In inr-reas l og order of t h e i r

node p o t e n t i a l va lues . T h i s also f a i l e d to reduce solution t imes.

These results strong ly suggested that more sophistica ted versions of

special pu rp ose sim p lex codes using g loba l l y updated node potentials are not

competitive with the simp ler label—correcting code C2. B e f o r e s u b m i t t i n g

comp letely to this conclusion , however , we decided to test a different imple-

mentation of the simplex method where the c and f functions are replaced by

the reverse thread , rt , and dep th , dh , functions . The primary motivation

underlying this implementation is tha t these functions can he upda ted more

easil y than the previous functions in the sett ing of s h o r t e s t p a t h p rob lems .

(This is not true , however , in the setting of other network flow problems.)

f~. 5 Prima l Simp lex lmp lemen ta ions Usin~~ p~~ d , t , rt , and dh Functions

The implementations based on the reverse thread and depth functions ,

l i k e the p reced ing i m p l e m e n t a t i o n s , use the t h r e a d f u nc t i o n to f i n d and u p d a t e

a l l node potentials in a subtr ee . The r t and dh f u n c t i o n s are used to up d a t e

t , replacing the c and f functions in this task.

F i r s t , a code C5 was implemented using p, d , t , r t , and dh f u n c t i o n s

i n i t i a l i z e d such t ha t p (v) = 0, v r N; t(r) rt(r) r; t(v) = rt(v) = 0,

v c N - {r) ; d (r) 0; d (v) ‘ , v c N — (r } ; d h (v) = 0 , v c N. Additionall y ,

code CS uses a FIFO sequence list to locate an arc (u,v) c A such that

6 = d (u) + d (v) — 2 (u ,v) > 0 , whereupon all nodes in the subtree of node v

art- decremented by 6 and “added to” the sequence l ist. SImultameous1~’, the

depth of each node In this subtree is incremented by ‘I’ d(u) — d(v) + 1. The

al gorithm terminates when the sequence list is empty.

-.

~

‘ -—

27

The p, t , and rt functions are updated by the fol lowing s teps where (u ,v)

denotes the arc to be added to A
T
. (The reader may find i t hel p f u l to p e r f o r m

these steps using Figure 2 and letti ng (u,v) = (8 ,3) .)

Step 1: Id e n t i f y the f ir s t k -
> 1 such that dh (t

k(v)) ~ d h (v) . (Note t h a t

the i d e n t i f ic a t i o n of k should be done s imul taneous ly w i t h the updating of d

and dh since i den t i f y ing k r equ i res t r a c i n g out the nodes in v ’s sub t ree .

In f ac t , t
k l (v) is the last node In the subtree of v .) Set t (t

k_ 1
(v)) : = t (u) ,

rt(t(u)): t (v) , t (r t (v)) : t (v)) , and r t (t (v)) : r t (v) .

Step 2: Set t(u): = v , rt (v) : = u, and p(v) : = u.

The solution times in Tables I and II indicate that the special purpose

simplex code CS is 25% to 30% faster than the equivalent method using the

p, d, t, c, and f functions , code C4. The results also clearly show the

importance of matching data structures with algorithmic steps. Further , the

results indicate that the code C5 is usually the first or second fastest label—

correcting code . The code most often superior to C5 is code C2. As with code

C4 , we modified code C5 to perform a number of candidate list pivot strategies.

None of these variants improved solution times , however.

These results raise the question as to why the “quasi—simplex” code C2 ,

which defers the complete updating of mode potentials is generally superior to

the full simplex codes C3, C4, and CS (and to their dominated variants whose

times are not reported in the tables). Analysis of the computationa l data for

these codes discloses that the number of pivots (label—correcting iterations)

made by code C2 typically is on the order of 1 1/2 to 2 times the number of

nodes in the problem. Observe that any label—correcting me thod which starts

with a tree consisting of only the root node , must make at least as many pivots

a~ the number of problem nodes if
each node in G(N,A) is accessible from the

I— .—
~~~~~~~~~~~~~~~~~~~~~~~ .--—  - ___ — ---—-‘— — ~~~~ —- --



28

roo t . Thus , the marg in for improvemen t in the numbe r of pivots made by C2

is small.

In fact , the simplex codes C3 , C4 , and CS do achieve some of t h i s  theoret i-

cally avai lable  improvement.  In p a r t i c u l a r , the average number of p i v o t s  made

by these codes is approx ima te l y 1 3/8 to 1 1/2 times the  number  of nodes.

The augmentations of codes by more sophisticated p ivo t r ules s till req ui re

pivo ts rang ing from 1 1/4 to 1 3/8 times the number of nodes. However , these

small gains in the number of pivots do not represent corresponding gains in

solu t ion t ime , and in fact lead to net losses, it appears tha t the additional

overhead involved in maintaining and upda ting the extra functions (plus

possibly maintaining a pivo t candidate list), simply overshadows the gain

achieved in reducing the number of p ivo ts for  sparse shortes t path ne tworks.

However , as densi ty increases in the shor test pa th networks , the pivot reduc tion

achieved by the full simplex codes over the quasi—simplex code C2 becomes

effec tive . In particular , the results in Table II indicate that the simp lex

code CS becomes comparable to C2 at 20000 arcs and is the fastest label—

correc ting code for the 1000 node random networks with 25000 and 30000 arcs.

Thus, it appears that as the networks become sufficiently dense , it is worth-

while maintaining complementary slackness .

7.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-SETTING METHOD 
-

In this section we discuss several implementations of the general label—

setting method . The primary difference between these implementations is the

way in which the minimum in step 3 of the algorithm description is found .

As for alternative implementations of the label—correcting method , these imple-

mentations are evaluated by solving the same test problems using the same

computer and compiler.

- . - ~~ -- =, — - 
- - - -

: - - _~ ~__ — 
—--



29

A n~i ive imp lementation of the general label— setting method would be to

m d  t he  set S of step 2 by examining i ll  arcs in A and then calculating and

discarding node potentials to f i n d  t he  m i n i m u m  of s t e p  3. Th i s  i n v o l v e s

e x a m i n i n g  a l l  arcs  d u r i n g  every e x e c u t i o n  of s t ep  2 , as w e l l  as p e r f o r m in g

many unnecessary node potential calculations in step 3. The imp l e m e n t a t i o n s

d e s c r i b e d  In this section make use of t e m p o r a r i l y  r e t a i n e d  node p o t e n t i a l s

in such a way tha t each arc in A is examined at most once , thereby avoiding

extensive recalculation.

As a basis f o r  u n d e r s t a n d i n g  these  i m p l e me n t a t i o n s , it is useful to observe

that steps 2 and 3 of the  l a b e l — s e t t i n g  method  s imp l y  f i n d  an a r c  f rom a t r e e

node to a n o n — t r e e  node which yields the minimum distance extension. Figure

3 illustr ate s one way of viewing these steps at some iterat ion where the

t ree 1 (N.1. ,A.1,) consists of the solid line arcs and their associated nodes. The

dashed line arcs and their ending nodes N
F 

indicate pos sible tree extensions.

(Note that N_N
T 

m a y  not be equa l to N
E

.)

By reference to this diagram , it may be seen that steps 2 and 3 c-an be

performed by keeping a temporary node potential and predecessor b r  each node

v in N
F 

such tha t d(v) = minimum ( d ( u )  + f ( u , v ) )  and the  p rede c essor ot  v is
U r N

r
set to a node u w h i c h  y i e l d s  the  m i n i m u m  node p o t e n t i a l  f or  v. Thus , if

p(v) u then —d(u) + d(v) = 9 .(u,v) .  Step 3 then adds a node v In N
E 

with

the s m a l l e s t  temporary node potential to NT 
and corresponding ly adds its arc

( p ( v ) , v)  to A,~. Af ter performing this step, node v ’s potential w ill never

change (i.e., i t  is assigned a permanent node potential at this time ) and arc

( p ( v ) , v) is permanemtly assigned t o  the tree . The name label—setting stems

from this property of the algor ithm .

- 
~~~~~~~~~~~~~~~ 

-- ‘.____________

30

In the following subsections we discuss four alt ern ative imp l eme ntation s

for c a r r y ing out s teps 2 and 3 in t h i s m a n n e r . These imp l ement ations differ

in the way they handle the following fundamental operations : (1) the computa -

t i o n and updating of temporary node potentIals , (2) the determination of the

m i n i m u m t empora ry node p o t e n t i a l , and (3) t he ass i gnment of one or more

temporary node potentials to a node in N
E
.

7.1 inter2 r e t a t ion of the Label-Settin~ Method as a Primai Si~a
lex Method

Before discussing these implementations , it is interesting to observe

t h a t the l a b e l — s e t t i n g method may be viewed as a special purpose prima l simplex

method where the basic variables correspond to the arcs pe rmanently assigned

to AT, augmented by artificial arcs which start at the root r and end ;.l t

node i f’r each i c N — N
T

such tha t 2.(r,i) = . The node potent ials clear ly

satisf y complementary slackness at each iteration; i.e., -d(u) + d(v) =

(u , v) ~ A1 and — d (r) + d (i) = ~ (r , i) , I c N NT. Further , the process of

s e l e c t i n g an improving arc (i , j) to e n t e r the b a s i s cor responds to searching

(i n some fa s h i o n) fo r an arc which v i o la t e s dual f e a s i b i l i t y (i . e

— d (i) + d (j) ~ 9 (i , j)) by the largest amount. The p r o cess of a d d i n g such an

arc (t , s) to A.
~
and deleting the artificial arc (r,s) from this basis is

equivalent to a simp lex basis exchange . The s e t t i n g of the node p o t e n t i a l of

node s after performing this basis exchange simply maint ains complementary

slackness.

Thus , the label—correcting and label—setting methods are both simply

variants of the same general al gorithm . More specifically, they are both

special purp ose prima l s imp lex methods which use different pivot strategies .

It Is well known in linea r programming literature that searching for the

variable wh ich violates dual feasibility by the largest amount at each itera-

tion to enter the basis does not usually produce good solution times. ln fact,

31

such an approach normally results in unusually large solution t imes . However ,

in the case of shortest path problems with nonnegative arc lengths , the

following subsections demonstrate that various researchers have devised inge-

n ious ways o f exp loiting the topology of the problem so that such a pivot

strategy can be performed by examining each variable at most once.

FIG. 3 - LA BEL - SETT ING ITERATION

7.2 Dijkstra Address Calculation Sort

The first implementation to be discussed is the one orig inally developed

by Dial [6], called code SI. Several studies [9,231 of shortest path algo-

rithms have concluded that code Si is the fastest code , superior to all other

label—setting and label—correctimg implementations .

The Dial code operates in accordance with the previous observations by

keeping a unique temporary node potential and predecessor for each node v in

- —. - _ _Dr r~~~~~~~~~~~~~~ - - - - - .. .z_n - - - - - — -

32

N
E

such that d(v) = m i n i m u m (d (u) + 2~(u , v) , and m a i n t a i n i n g p (v) = u for a
U L N

T
node u s at i s f y i n g d (v) = d (u) + l-(u,v). Likewise , at each i t e r a t i o n , a node v

in N
E

with the minimum temporary node potential is added to NT
and its arc

(p (v) , v) is added to AT .

The chief feature of code Si is the manner in w h i c h t emporary node poten-

tials are u p d a t e d and t h e i r min imum is i d e n t i f i e d . In p a r t i c u l a r , a f t e r

adding node v to N1, the updat ing is accomp lished simp ly by scanning the

forward star of node v. The new candidate values for node potentials imputed

by these arcs are then calculated and compared with their current temporary

node p o t e n t i a l s , r e t a i n i n g the smal ler one w i t h i t s corresponding predecessor .

The Dial implementation then identifies the minimum temporary node

potenti: i using the following observa t ion. Each temporary node potential

equals a permanent node potential plus the length of some arc. Consequently,

t empora ry node p o t e n t i a l values may be uniquel y represen ted modulo
~
2
max

+ 1)

where Q. = maximum 9~(a) . That is , if d (p) ~ d(q), where d(p) and d(q) areax a t A

temporary node potentials , then d(p) modulo
~
9
max

+ 1) ~ d (q) modulo
~~max + l

To see this , suppose that node v has the min imum temporary node potential

a t the current iteration. Then d(u) < d (v) f o r u NT
and thus for t c

d (v) < d (t) ~ d (v) + 9 . In other words , at each iteration all temporary
max

node potentials are bracketed on the lower side by d (v) and on the upper s ide

by d(v) +

~max ’ Thus it is possible f rom one i t e r a t i o n to the nex t to u n i q u e ly

r ep re sen t a l l temporary node potentials modulo
~
9
max

+ ~~~

To f i n d the m i n i m u m b y this procedure , it is convenient to use a computer

a r r a y k of s ize 9. + I where
max

- - . - -- -- -‘- ~~~~~~~~~~~~~~~~~~ ,— -,- - —.- ~~~~ ~~~~~~~~~• - -
~
— - ~- - - — — ---

33

(3 i f i ~ d (v) modu l o (I + 1) , b r any v I N .

k (I)
max E

i t i d (q) media In i + 1) • I or some q ~ Nmax E

wh e r e p. is a pointer which points to all nodes in N
1

t h at have a modulo

t empora ry node p o t e n t i a l va l ue of i . The nodes in N~ that have the same modulo

t e m p o r a r y node p o t e n t i a l va lue (and t h u s , on a n y g iven iteration , the same

t e m p o r ar y node p o t e n t i a l va lue) are i d e n t i f i e d by c h a i n i n g the nodes by a

t w o - w i ; l i n k e d l i s t . Thus , every node with the same temporary potenti al value

is l i n k e d to an a n t e c e d e n t and a successor node (wh i ch may be d ummies at the

“ends ” of t h e list). When a node ’s temporary potential changes , the node is

d i s c o n n e c t e d f r o m the c h ai n s imp ly by re—linking its antecedent and successor

to ea~ h other. This array achieves an “atitomatic sort ” of the nodes in

relativ e to their temporary node potentials. Figure 4 illustrates t h~ sort

structure induced by the k array and the two—way linked lists , representing

node names by the symbol n .

k
____ ___ ____

o p0
_ _ _ _ _ _ _ _ _

1 0
S E~~2 P2

_ _ _ _

3 0
_ _

_ _

_ _

P6 _ _

1MAX

FIG . 4 - ADD RESS CALCULATION SORT

__________ - —~~~~~~~~~~-.~~,.-.--- ,-.——=-—- , ~~~— --- —~~~—. . — — - —— —~~

34

The current minimum temporary node potential is found by sequentiall y

examining the elements ot k in a wrap around fashion. Each time a nonzero

element of k is encountered , the current minimum node potential is that of

the nodes assoc iated w i t h t h i s element , and examination of k resumes at the

next nonzero element of k on the n e x t i t e r a t i o n .

To describe the implementation of this algorithm , it is convenient to

def ine the following terms :

1. The imputed node potential value of node q, relat ive to the forward

star of v, denoted by d (q) , is d(v) + 2.(v,q) .

2. An improving imputed node potential d (q) is one such tha t

d (q) < d(q); i.e., d~ (~~) is smaller than the current minimum

temporary node potential of node q.

3. Node q is an improving node relative to FS(v) if it has an improving

imputed node potential .

4. A node v is scanned by exam in ing FS(v) and updat ing d(q) and p(q)

f o r each improv ing nod e q C FS(v) ; i . e . , d (q) : = d~~(q) and p (q) = v .

To imp lemen t this appr oach , the algorithm initializes p(v) = 0 , v C N;

d(r) 0 and d (v) ~~~ , y e N — {r}; and k(i) = 0 , 0 � i
~

The root

nod e r is then scanned and the improv ing nodes of FS (r) are “added to” the

appropriate elements of k. The first pass of the k list starts at k(0),

examining the elements of k in sequence until the first nonzero elemen t is

encountered. Each node v associated with this nonzero element is then

sequentially removed from the two—way chained list and scanned. Any improving

node q located during the scan of v is removed f r om “its current position ” in

k and moved to its new position d~ (q) modulo 19.max
+ 1). (If d(q) = ~~ then

node v has never been added to k and thus no step is required to remove it.)

- . . - -

3~

A t each subsequen t I terat ion , the e x a m i n a t i o n o ar r ay k resumes whorl-

i t l i - f t o f f (and wraps around if n e c e s s ar y) to f i n d the f i r s t non/em e n t ry .

T h i s entry identifi es a node with the new m i n i m u m t emp o r ;i r y nod e p o t e n t i a l .

A l l c ha i n e d nodes with this temporary node potential are then removed fran k

and scanned in the manner previously Indicated. The algorithm stops when a

c o m p l e t e pass of k is made w i t h o u t f i n d i n g a nonzero en t r

This approach is called an address calculation sort because the insertion

and deletion of an item from the list simp~,,y involves calculating an address

in a convenient and straight forward manner. Its app lication t o s h o r te s t

path imp l ementations , as proposed and coded by Dial , is known in the l i t e r a -

t u r e as CACM Al g o r i t h m 360 (see [6]) . This al gorithm , as noted earlier , was

found by Gilsinn and Witzgall [9], as well as by authors of several u n p u b l i s h e d

studies , to be the most efficient shortest path method f o r p r o b l e m s w i t h non-

negative arc’ lengths.

Two attractive features of this algorithm , in addition to its efficiency,

are- its simplicit y and the structuring which assures that each arc is examined

at most once. This latter feature , which is Independent of the use of the

address calculation sort , follows from the tact that an arc is scanned in a

given iteration If and only if its starting node has a minimum node potential.

at tha t iteration. Every node “reachab le ” from the root must have a minimum

pot ential at some s tep , but never more t han once , thus only the arcs starting

at reachable nodes are examined at all.

This imp l ementation has two ma]or t ime consuming tasks : (1) inserting

and d e l e t i n g nodes in the two—way linked array when their node potentials are

redu ced , and (2) examining the elements of k to f i n d the next minimum . The time

required by the first task is partiall y Illu strated by the increasing solution

—
-— - - - -

- —— — .— -—

36

times of Table 11 when the number of arcs is increased . The effort of the

second task is d r a m a t i c a l l y shown b y comparing the t ines in Tables I and I I

f a r the d i f f e r e n t a rc l eng th ranges .

These solution t imes generally show that the algorithm ’s performance

depends on the maximum arc lengths , number of nodes , and number of arcs.

Each of these i t e m s has a d i r e c t or i n d i r e c t i n f l u e n c e on the two main com-

p u t a t i ona l tasks. More specificall y, the maximum arc length directl y affects

the sparseness of the k a r r a y (as measured by t/(2. + 1) where t equals the
max

number of nonze ro e n t r i e s In k) . As the sparseness of k increases , mo re

elements of k must be examined at each iteration to find the new minima’

The number of nodes and the nunber of arcs in the network both indir ectl y

affect t he sparseness of k since these parameters influence the number of

nodes with temporary node potentials. Add i tionally, these parameters at lect

the number of nodes whose node potentials decrease from iteration to iteration

and thus require relocation in the two—way linked lists.

Another limitation of this implementation stems from its computer memo ry

requirements. In particul ar , the k array is of size + 1 w h i c h can bt —
max

p r o h i b i t i v e f o r large a rc l e n g t h s . D i f f e r e n t ways of coping w i t h these limita-

t ions are discussed subsequently.

7 . 3 D ant z~~~ Address C a l c u l a t i o n Sor t

One way to reduce the effort of inserting and removing nodes on the two—

way linked list is to postpone adding nodes to the list. This can be done by

observing that it is unnecessary to scan the entire forward star of the node

v when it is assigned a permanent node potential. In particular , on ly the

endpoint of a minimum length arc in such a forward star needs to be considered

for addition to k. This follows from the fact that all temporary node potentials

determined f rom node v will be greater than or equal to the node potential

- -

~17

(lett- rm in ”d ¶or t h e end poi n t ~ f a m i n i m u m l e n g t h a r c of F S (v) . We now describe

an I M r a e f l de si gned to exp loit this observ,it ion .

In order to l i m i t t h e nodes cons ide r ed f o r add i t ion to k b y se l e c t i ng

a m i n i m u m l e n g t h ire from F S (v) , i t is c’o n v e n i e n t to s to r e the n e t w o r k G (N , A)

a ~o r t ~ -d t ’r warI star form. George D a n t z i g [4) was t h e f i r s t to sugges t

this tv p t of scheme , and thus we refer to i t as the Dantzi g address calculation

so r t .

At f i r s t g l ance , the D a n t z i g add res s c a l c u l a t i o n sor t appea r s to in c u r

substant ial pre—process ing work——a fact tha t has a p p a r e n t l y di scou raged at her

r e s e a r c h e r s f rom p u r s u i n g t h i s a p p r o a c h . Indeed , fo r a “on e — s h o t ’ s o l u t i o n

o f the s ho r t e s t pa th p rob lem , t h e e f f o r t devo ted to o r g a n i z i ng the d a t a in a

s o r t e d f -rwa rd s t a r f o r m o u t w e i g h s the a d v a n t a g e s to be g a in e d . However , it

is i m p o r t a n t to r e c o g n i z e tha t the c o n s t r u c t i o n of a l a r g e t r an s p o r a t i o n net-

work , as must commonly he done for a large city , costs hundreds of thousands

01 doil irs. Further , once this data base is constructed , it is used again

and aga in t o f i n d s h o r t es t p a t h t rees f o r a l t e r na t i v e root n odes . T h e se

r ep e a t e d a p p l i c a t i o n s can il l be based on a single pre—proce ssing effort.

Addit ionall y , changes to the d a t a base ot such l a r g e t m a n s p o r a t ion net-

w or k s g e n e r a l l y i n v o l v e o n ly a s m al l p o r t i o n of t h e o v e r a l l c o n f i g u r a t i o n

(ad d i m g or d e l e t i n g certaIn a r c s , or chang ing t h e l e n g t h s of o t h e r s) . Thu s ,

minima l a d d i t l o n a l w o r k is r eq u i r e d to amend t h e sort ccl for w a r d s t a r farm to

arc ’om mu d a r e the e f f e c t of such c h a n g e s .

J r is p o s s i b l e to t a k e advan t age of a n e t w o r k in so r t ed fo rward s t a r form

b - m o d i f y ing t h e code S I in t h e f o l l o w i n g p r i n c i p a l w a y . The im p r o v i n g nodes

of t h e f o r w a r d s t a r of e a c h node In N T art - aeq~ic nti rl l y added to t he two—way

linked list (t h e tw (—w ;Iy linked list Is actuall y re placed by a one—way linked

I 1s t i n t h i s imp lemon t a t I o n) as the p r e v i o u s node of NT is removed. Thus

- - ~~~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ -—

38

the one—way linked list c o n t a i n s at most as many ~- ‘d~ is nodi-s I n N .1 .

Add i t l o n a l l y , ea c h t i m e 4 nod i .’ n . i s ~ b l i d t o t h e one—wa y linked l i s t

tire predece ssor of n , a t t h e t im & ’ i t is .idded (I . ,- ., th e forward s t i r nod~

whic h put node n . on the lis t) is p air ed wi t h n
1

and i~bl~ d t o t h e l i s t .

That is , each i t em on t h e o n e — w a y l i n k e d I 1 ’ : 15 a t a i r which con sist s of a

node and its predecessor. T h i s h a s s e v & - r a l i d v a n t i g i - s . Ft r - ; t , i t i l l o w s a

node to appear more than once on t h e n t - — w i ~ I inked I is t and t h u s i-i iminates

the need to move nodes when t h e i r tempo r i rv node potent t a Is a ri decreased.

T h i s , in turn , postpones the removal of a d up 11 c at t ‘ d~ f r o m the o n e — w a

linked list until the temporary ir d,- potential imputed to this node by i t s

paired predecessor is a minimum . This correspondingl y postpones the scan of

t h i s p r i- li -essor to identify it- ; next improving node as long as possible.

1 he al gorithm basically operates in the manner pr ev iousl y described for

SI e x c e p t t h a t : (1) The t w c — w a v l i n k e d l i s t is rep l a c ed by i on e — w a y l i n k e d

l i s t . (2) The fo rward s t a r of e a c h node v in NT
is scanned until an improvin g

node u is t ound , whereupon u is p laced on t h e l i nk e d l i s t w i t h i t s p r e d e c e s s o r

v , and p(v) is set to v and d(v) is set t o d (p (v)) + c (p (v) , v) . (N o d e p(v)

is not scanned again until the ordered p a i r (v , p (v)) i s removed t r om t h e lin ked

list.) (3) k is sequentiall y searched for the n e x t m i n i m u m is b e f o re .

It s h o u l d be noted in this imp lementat ion , however , tha t t h e n ex t 1 ’nze ro

element of k may not point to the next minimum , as was t l i t ’ e l s e f o r S i . Thus

when a node v is removed from the linked list , ft is discarded if its paired

predeces so r d i f f e r s f rom its current predecessor in a r r a y p , s ince t h i s i m p l i e s

t h a t v nas already been assigned a permanent node potential. In any event ,

the predecessor paired w i t h v is scanned fo r i t s next improving node. It an

Improving node is found , It is added t o the I inked l i s t in t h e manner a l r e a d y

described .

- ‘ — - . — - —
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r-- - , — - — - -—



39

In  t h e  case t h a t  v ’s p a i r e d  predecessor  is equal  to i t s  c u r r e n t  predecessor

p ( v ) ,  t h e n  v ’ s temporary node potential is a m i n i m u m  and v is assi gned a perma-

n e n t  p o t e n t i a l  and added to N 1. F u r t h e r , node v is scanned  as d e s c r i b e d  in

step 2. Code S2 embodies this implementation. A precise description of the

imp l ementation is given by the  l i s t i n g  of the code in t he  a p p e n d i x .

The advan t ages  of t h i s  i m p l e m e n t a t i o n  are : ( 1 )  the  a l g o r i t h m  can he

t e r m i n a t e d  when a l l  nodes are  p e r m a n e n t l y  l abe led ; ( 2 )  a node is never moved

on the  l i n k e d  l i s t  when It s  node p o t e n t i a l  is improved ;  and (3) the postpone-

ment a t  a d d i n g  temporary node p o t e n t i a l s  to k deeps less i n f o r m a t i o n  on d and

potentiall y avoids adding dominated values to k.

Because of (1) it is not necessary for k to be empty; consequentl y, even

when a l l  nodes are reachable from the root , i t  is not  necessary  to examine

each arc once .  The s t r a t e g y  of (2 )  cou ld  have been a p p l i e d  in the  Dia l

imp l e m e n t a t i o n , b u t  is no t , because in the  Dial  imp l e m e n t a t i o n  if a node is

d u p l i c a t e d  on the linked list , the number of nodes on the l inked list could

be as large as the number of  a r c s .  This  Is n o rm a l ly  p r o h i b i t i v e  because  of

computer memory sp ice. However , in the S2 implementation , the number of nodes

on t h i t ’  l i n k e d  l i s t  w i l l  neve r exceed the  number of nodes in  the  p r o b l e m  s ince

t h e r e  is a t  most one node on the  l i n k e d  l i s t  fo r  each node in N1.

The c o m p u t a t i o n a l  r e s u l t s  in Tables  I and 11 r e f l e c t  these  a d v a n t a g e s .  The

results in Table II indicate t h a t  t h e  code S2 strictly dominates code Si on pro-

blems with 10,000 or more arcs (i.e., problems with an average of 10 or more arcs

per node). A thoroug h analysis of  these results indicates that this dominance

r i - s i l t s  p r i m a r i l y  from advantage ( 1 )  above. Namely, on problems with 10 or

• more a r c s  per node , S2 examines onl y a suhs -t ot the arcs be fore s t o p p i n g .

T h i s  m d i  ates that the superiority of code S2 should become mor e  pronounced

on denser problems . In  ;idditi om , the results in l Ibl e II indicate that code 52

&



40

Is the fastest code for problems with 10,000 or more arcs in the 1—200  arc

length range and for problems with 15 ,000 or more arcs In th e  1—10 ,000 arc

le ngth range .

The results in Table I , however , i n d i c a t e  t h a t  code S2 is i n f e r i o r  to

code Si f o r  grid problems . This is due to the  f a c t  t h a t  code S2 has to

examine almost every arc on these sparse problems . Dantzig in f4) sug ge s t s

pre—ordering the arc lengths in each forward star before solving the problem.

Thus , we called the above code the Dantzig address calculation sort. Next

we b r i e f l y disc uss a numb er of our a t t e m p t s  to improve t h i s  method .

7. 4 Improvements to the D an t z i  ess C a l c u l a t i o n  Sort

Recall tha t code S2 keeps at most one entry on k fo r  each node w i t h  a

permanent  node p o t e n t i a l .  Thus fo r  problems with 1000 nodes and with arcs

in the  1—10 ,000 arc length range , k is very sparse .  As a r esu l t , a l o t  of

time i s  spent searching for the next nonzero entry of k.

In an e f f o r t to reduce th i s  search time , we t r ied two d i f f e r e n t  imple-

mentation strategies. The first was simply to partition k into segments of

equal length and to keep counters of the number of nonzero entries in each

segment.  This was done fo r  segment sizes of 16 , 32 , 64 , 128 , and 256.  The

algorithm then examined the counters to determine if any of their associated

elements contained a nonzero e n t r y . If  not , a l l  the e lements  of t he  segmen t

could be skipped without being submitted to examination . The results of this

testing are not shown in Table II because this procedure did not improve

solution times .

This testing did disclose an interesting p iece of inf ormat ion , however.

Name l y ,  the tests indicated that the nonzero entries of k are approximately

uniformly distributed in R. (Note this is probably due to the f a ct  t h a t  the

are lengths were generated using a uniformly distributed probability distribution .



41

Th us , t he  above results may not  hold  f o r  p rob lems  whose arc lengths do not

satisf y this property.) I)ue to the  sparseness  of k , t h i s  imp l ies  that each

counter v a l u e  is s m a l l  and thus  each segment of k c o n t a i n s  very  few nonze ro

entrie s .

To take  advan t age  of t h i s  f i n d i n g ,  we aggregated the segments of k.

That i s , r a t h e r  t h a n  c h a i n i n g  together nodes w i t h  the  same t e m p o r a r y  node

potenti als , we chained together all nodes in each segment. We then  l i n e a r l y

sorted the elements of a segment at the point at which it was selected for

examination. This type of sort is called a single radix sort [ 1 9 ]  and the

r a d i x  r is the size of each segment. Code S3 is a modification of code S2

and uses a sing le radix sort.

The results in Tables I and II i n d i c a t e  t h a t  code S3 dramatically dominates

codes Si and S2 on gr id problems . Further , code S3 , in c o n t r a s t to codes Si

and S2 , is very s t ab le  as r e c t a n g u l a r i t y  v ar i e s . Simil .-i rlv , th e results in

Table 11 indicate that code S3 strictl y dominates code Si and dominates code

S2 on the sparser random netwo rks . As density reaches 2(1 arcs per node ,

code S2 dominates  code S3.

Resides its computational improvement , the sing le rad ix sort has an addi-

tional advantage : It requires less computer memory . The size of t he  k array

is reduced from (2. + 1) to (2. + l)fr.
max max

However , better computationa l bounds (based on worst case analysis) are

ava ilable for balanced and unbalanced binary sort procedures [16 , 19] than fo r

the single radix sort procedure . Consequently, we developed a code , S4 ,

based on the Dantzig approach using an unbalanced binary sort to test whether

the better theoretical worst case bounds might supply a practical advantage .

Tables I and ii indicate that S4 is slower than Si and S2. We did not use

a balanced bina ry sort , which has a still better bound (i.e., logarithmic

- ~~~~~~~~~~~~~~~~~~~~~~~~ - —~~-—-~~~~~~~ — ... r,_ ~~~~~~~~~ — 
- ——

- -_ 
- - —~~~ -.-



42

bound) than the unbalanced binary sort , because the Gilsinn and Wirzga ll study

19) as well as other unpublished studies found the Dijkstra al gorithm using a

balanced binary sort to be slower than code Si.

Without going into great detail , an unba lanced  binary sort works by keeping

a b inary tree of numbers (nodes) with a root number (node). A number is added

to the  l i s t  b y comparing the number with the root. If  the number is smaller ,

i t  is moved downward to the l e f t  and compared next  w i t h  the number in that

p o s i t i o n .  I f  the numbe r is larg er , it is moved downward to the right and

compared next with the number in tha t position . This type of comparison and

movement continues until the bottom of the tree is reached along some path.

At t h i s  p o i n t , the number  is hung  to the l e f t  if it is smaller than the  last

t ree nunl’ er to which it was compared. Otherwise , it is hung to the right.

The minimum is always the left—most node In the tree . The tree is

ca l led  an unba lanced  b i n a r y  t ree because the depth of the bottom nodes in the

binary tree may va ry  g r e a t ly .

8.0 EVALUATION SUMMA RY

8.1 Solution_Times

The results In Tables I and II i n d i c a t e  tha t  the  code Si p rev ious ly

believed to be the fastest code for calculating the shortest path from one to

all othe r nodes in a ne twork is dom ina ted b y codes C2 , S2 , and S3. F u r t h e r ,

the study shows tha t the most efficient solution procedure depends on the

topology of the network and the range of the arc length coefficients. On grid

networks and sparse random networks code C2 is the fastest. In fact , this code

is somet imes an order of magnitude faster than Si. As density increases , code

S2 dominates C2. This dominance depends both on density and the range of the

arc length coefficients. For examp le , for a problem whose arc lengths are in

— — -“-~~~~~i. - •- c— - .- - - - — 
-
~~~~ 

~T - - ~ ‘—

43

the 1—200 range , code S2 dominates C2 when the average number of arcs per node

exceeds 10; however , for a problem whose arc lengths are in the 1—10 ,000 range ,

code S2 does not dominate C2 until the average number of arcs per node exceeds

15.

8.2 Memory Requirements

Table III contains the computer array requirements of each code . Code C2

not only computationally dominates the other codes on grid and sparse network

problems , but also dominates them in terms of computer memory requirements.

Table II indicates the paradox involved in using the label—setting codes to

solve large shortest path problems . In par t icular , code S2 is the fas tes t of

all the codes (including C2) on dense problems but requires substantial computer

memory w’~ich often would prohibit using it to solve such problems.

8.3 Limitations

This study has examined the efficiency of algorithms when all problem data

Is kept in fast access main computer memory . It is exceedingly impor tant to the

realm of ul tra large—scale applications , which are ar ising wi th increas ing

frequency, to similarly examine design principles for efficient computer codes

and to determine the best algorithmic rules for the situation in which problem

data is exchanged between main computer memory and peripheral storage .

The creation and testing of methods with ultra large—scale capabilities

to Identify the precise trade—offs of mathematical and computational considera-

tions in an environment where data mus t be allocated and transferred between

different types of memory will require substantial research. It is our belief ,

based on the present study , that the best implementation princi ples to emerge

from such research will be based on the design of code Si. This belief may

seem paradoxical since code S3 Is clearly dominated by other codes. The belief

_ -.- ~~~~~
____________ :~

44

largely rests on the fac t tha t the use of peripheral storage will make it

impractical to randomly access arc data. All other codes require random

access of arc data. Further , if random access is not used then we feel that

updating the node potentials in the manner ac complished in code C3 w i l l

prove ex tremely valuable.

Table III

COMPUTER ARRAY SPACE

Node
Node Arc Length

Code Length Leng~j~ Logical Other

Cl 4 2 1

C2 4 2 1

C3 6 2

C4 7 2 1

C5 7 2 1

Sl 5 2 1 1 (2. + 1)
max

S2 6 2 /
S3 6 2 1(2. + 1

S4 10 2

Where r is the size of the radix.

S - - - r .r -r S - J

45

~~k~~wl~~~~~~~ts

T h i s paper has grea t ly benefi ted from discussion with leading researchers.

In pa r t i c u l a r , we wish to thank Dr. Ell is Johnson for pointing out a number of

potential advances of the Dantzig algorithm. Further , we wish to acknowledge

the apt comments and direct assistance of Professor Uwe Pape in developing

code S2. The ass i s tance of Fernando Palacios—G6me z in develop ing the Dan tzig

b inary sort code S4 is sincerely acknowledged.

The authors also wish to acknowledge the cooperation of the staff at The

Un iversity of Texas Computation Center and the editorial assistance of Dr. John

Hultz.

~-~-.- —-~- - — —~ I—
— -~~--- .~ — -- — - - - 5-

—
—~~~~~~— - -

4 1,

RLFER [NCE S

1. R. Barr , F. Glov er , and D. Klingma n , Enhancements of Spanning Tree
Labeling Procedures for Network Optimization ,” Research Repo rt [CS 262,
Center for Cybe rnetic Studies , University of Texas at Austin , l ’~/~ .

2. G. Bradley , G. Brown , and G. Gra ves, “Design and Implementation of Large
Scale Prima l Transshipment Al gorithms ,” Technical Report NPS55B~BW76O91 ,
Nava l Postgraduate School , Monterey , Ca lifornia, 1976.

3. A. Charnes , F. Glover , 0. Karney , D. Kl ingman , and J. Stutz , “Past , Pres ent ,
and Future of Development , Computational Efficiency , an d Pr ac ti cal Use of
Large-Scale Transpo rtation and Transshipment Computer Codes ,” Co~p~ters
and O.R., 2 (1975).

4. D. Dantzig , Linear Pr i-anunin~ and Extensions , Princeton Univers i ty Press ,
Princeton , New Jersey , 1963.

5. J. Denn is, ‘A H i gh-Sp eed Computer Te 0niq ue for the Transportation Problem ,”
JACM , 8 (1958), 1 32-153.

6. R. Dial , “Algorithm 360 Shortest Path Hrest with Topological Ordering, ”
Communications of the ACM , 12 (1969), 632-633.

7. E. D jkst ra , ‘A Noto on Two Problems in Connexion wit h Graphs, ’ Numerical
Mathematics , 1 (1959), 269-271

8. S. Drejfus , “An Appraisal of Some ‘~hor - t€-~ t - Path Algorithms ,” Qperat ions
Resear h , 17 (1969), 395-412.

9. J. Gi l s inn and C. Witzga ll , “A Performance Comp arison of Label ing
Algorithms for Calculating Shortest Path Tre~’~,” NBS Technical Note 772,
U.S. Department of Conirierce, 1973.

10. F. Glover , 0. Karney , and D. Klingman , “Implementation and Computational
Study on Start Procedures and Basis Change Criteria for a Prima l Network
Code ,’ Networ ks , 4 (1~~4), 191—2 12.

11 . F. Glover , 0. Karney , 0. Klingm an , ~ A. Napier , “A Comput dtio r)a) Study on
Start Procedures Basis Change Criter ia, and Solution Al gorithms for Trans-
portation Problems ,” Manalernent Science , 20 (1974), 703-~13.

12. F. Glover , D. Kl ingman , and J. Stutz , “The Augmented Threaded Index Method
for Network Optimization ,” INFOR , 12 (1974), 293-298.

13. B. Golden , “Shortest Path Algorithms : A Comparison ,” Researc h Report
OR 044-75, Massachusetts Institute of Technology , 1975.

14. R. He l gason , J. Kenning ton , and H. La]], “Prima l Simp lex Network Codes :
State-of-the-Art Implementation Technology ,” Technical Report IEOR 76014,
Department of Industrial Engineerin g and Operations Research , Sou th ern
Methodist Univers i ty, Dallas , Texas , 1976.

1 5. 1. Hu , “Rev ised Matrix Algorithms for Shortest Paths ,” SIAM Journa l o f
Appjied Mathemat ics, 15 (1967), 207-218.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—~~,~ -- - . -  - -S 

~~ 
— 

~~— ~
_

~~__ ~
_
~:
_ 

-
- 

—



47

16. E. Johnson , “On Shortes t Paths and Sorting ,” Proceedings of the ACM
25th Annual Conference, (1972), 510-517.

1 7. D. Karney and D. Klingma n , “Implemen tation and Computationa l Study on
an In-Core Out-of-Core Pr ima l Network Code,” pR~~~~~~~~~

searc h ,
24 (1976).

18. D. Knuth , The Art of Computer Programing, Vol. 1: Fundamental ~j~~~~~!ms ,
A ddison-Wesley , Reading, Mass., 1973.

19. D. Knuth , The Ar t of Com pt ~ er ~~~~~~~~~~ Vol. 3: Sor1~f~~ and Searching,
Addison-Wesley , Reading, Mass ., 1973 .

20. E. Moore, “The Shortest Path Through a Maze,” Proceedings of the Inter-
na tional Symposium on the Theory of Switching , 1957 .

21 . J. Mulvey , “Column We ighting Factors and Other Enhancements to the Aug-
mente d Th reade d Index Metho d for Network Opti mi zat ion ,” Jo i nt ORSA /TJ MS
Con ference , San Juan , Puerto Rico, (1974).

22. U. Pape, “Implementation and Efficiency of Moore-Algor ithms for the
Shortest Route Problem ,” Mathematical Prograriwnin,~~ 7 (1974), 212-222.

23. D.W. Robinson , “Analysis of a Shortest Path Al gorithm for Transportation
Applications ,” Contro l Analysis Corporation , Techn ical Report , March 1976 .

24. V. Srinivasan and G. Thompson , “Accelerated Algo rithms for Labeling and
Rela beling of Trees with Applications for Distr ibution Problems ,” JACM ,
19 (11i72), 712-726.

a —— -— —~~~~~~ - .=-~~~ - - - - ._ -_ -.~~~~~~~ - - -_~ 
. - - — — ___________ — — — -



48

A P P E N D I X  

_S~~~_~__~~~_ -.~~~~~~~~ - - 5- --— ~~~~~ --~ - -5 - - ,-.. -S - - — -5— -5-



49
SUt~ thUTI ”~E S~?

C
C S? FI~~r.S T~ F SIIUw T FST PA T~~5 TO A L L  ~O DE S FRU~- TH~ ROOT R

C fOR T P’~ ~FT ’~OR, OFf I -I h i) o Y  I~~E A R R A Y S  A , ~~ , A ND L , IT R ET 1R ~ S
C T~~E S~1~,RTE S T P A T h  T R U E :  T N  1~

-
~’ A R R A Y S  P A ND 0,

C A LL ~ A W T A ’~L E S  ~R1 TY PE INTE GER ,
C
C DE F Tr .I T It JN OF V A R 1 A HLE~S
C
C V A R J A M L E 

- 
L E N G T H  IF

C N A P .~I: A N A R R A ~’ M E A N I I ¼ J (

C a a a —

C
C hOOF NUH8ER nF NODES l’~ 

T H U  N E T w O R K

C L°~~ 
M A x I~’ 1J~ AP C LE~~G T h  PLu S O~.E

C I f T N  f~O S I T T V E  C C N S T A N T  G R E A T E R  THAN A NY
C P A T H  (I ,E ,, +I~ . F I N I T Y )
C R T HE R o O T  NODE
C N NO , O F A R C S  L I S T  OF T ( j — N C O E S FO R T H E A R C S  IN T HE
C NET ~ oPu~ j.

~ 
O Rf ) E~ ti’r FR L) 1 NODE

C L NO , flF A R C S  AR C L E N G T H S  F’J w T H E A R C S  j~j N
C A N o r ) E + l  EN T R Y POIOT S I N T U - T r I L N ANL ) L L I S T S
C P NODE P R E D E C E S S RS fl~ T~ F P~ODES IN T H E
C S H O R T E S T  P 4 T ~ u TPEE
C 0 NODE LENGTH OF PATH FR1’~ ROUT (POTEN T IA L )

C lA S-AVE NOO Ff1 A R R A Y  f O ~ S A v I N G  A R R A Y  A

C S NODEsI SUCCLSSfl~ 
A R R A Y  FlA k SOHI A N D  FREI  LIST

C EN TR IES
C K L PIAX PO INT E R TO F IR S T  E~:1Ry (If SORT LISTS

C I NOOE +I NODES TO HE SC~~\NF O
C H NODEs! PREDECESS ORS °F T0f NO~) ES JN I ~‘~EN
C NODE ~ A 5  A Or)H) To SORT LIST

C IF R EE HEAD OF F~~EE S T f l P A l .E. L I S T
C ~SET NUr4BEP OF NODES LA~~ (J’
C 2 NEXT SORT LIST Ill ~E EX A f r I N E D
C
C E~.TPY PO INTS

C S2 H A S  T”O EN T RY PnIr -~T S ~
C S?~I 

M UST HE R E F E R ’ E ’ )  TO I~ T H E F I R S T  C A L L  A Nt ) ~~~
‘ -

~

C S? uUST ~E ~ SEt ) IN A LL S’J~3S E 2 J ~ NT CA LLS
C —5-—

CO RMON p:Of)E , LM A X ,R , I,~F IN , TFP EF

CC~~”O~ N (  i ?~’~’-’) ,~~ C I2V ~~ ,O( ~ i i ~ ,p ( ~~~ ) • A~ i o i )
I S( Ic~1),T ( ~~~ 

),K~ ?5:’),’-i ( 1~~1~~,I A S a v 1  C 1.- i )  ‘
~~~

—
~~

I N T E G E R E . T r S , Y . A . j , ? , A U X , P , S , v , R , T ,~~,) , T E ~ ,x ,MEM ,H
C E~ITRY Fr~R A l L CA LLS A FTE R THE. f T PST

C RF s 1u~ E A A R R A y f R C ’~ IA S A V E ‘
~
“ - .

DO ~~ 1 1 ,NO DFP
A f j ~~: I A S A V E : C I)

&O 10 7~
(~~~)

C E N TRY POINT FOR FIR ST CA LL
E N T R Y S2~’

C SORT A R C S Pçu e~ EA C H N ODE t iv T N C R F S te - (, A R C L E N G T H
C SOR T USE S a SHELL SOR T ‘~jTh I N T E N V A L S ~ AND 1

Dfl 77 I~~1.’J0I,E.
I I zA (1)
1?~~4 (1 st)
N~Js
I F (N N . 1~ A b , M 4 , 85

~

‘.

~

——

~

—‘----- -
— — - -~~~~

--
~~~—~ 

- - - -
~~~~ — - 

- — - — - - ——— - - - —~~ -—---—- .

86 A (I):~4
50

GO lU J 77
85 I F (N N . G E , 1 3) GO TO 78

10=1
GO TO 83

78 IO :~4
83

lOP: 1 0.11
0(1 ~~
K K IO:J
KK KK IDa ID
JN :N (J)
JL:L(J)

82 IF (JL,GF. 1fKI ~i) GO
TQ 8!

ID) =L (K”.)
K K I D:KK

I F (K w . G F , I !) GO TO 82
81 N (KKTCfl - J N

L (KK IO~ :JL
8I~ CON TINUE

IF (I D.L~~,1) GO T~ ~a
10:1
GO TO 7 q

77 C O N T I N u E
C SAVE A. :~C D A T A ENT RY DOjNT ARRAY A IN TA SAV E

NODE P NODE+ I
DO 7e, j : 1 ,N OD E P

76 I A S A V E C I) : A (I)
75 CON TiNUE

‘ ~ c IN ITiAL IZE DA TA
SET SHORTEST OISTA ~~CES TO IN FIN ITY

~~~~~
‘ ‘~~C SET U P F RF E.  STO RA GE L IST IN S

C CLE AR O THER A R R A Y S
DO I tu :I, ’JOU€

-. .~~~ 
D(U ):TNFLN

S (U ) :U+ I.— -J T ( U ) : V

•--- :~ ~ CONTI NUE
IFWEE :1
S ( N O 0 E + I . ) z

~

i
D O 2 7 1 , L H A X

2 CONT INUE
L-~ ) c

C ST AR T  A L G O R I T H M

LE V .U
Z z 1

C LAHE L ROO T NODE R W I T H D I STA NC E Z ERO AN D SCAN A S PREDECESS OR NODE

NSE.T:I
- U~~R

GO 10 38
C
C SF 1 F T N A L  SHORTES T D I STA N CE (LA REL ) FOR NODE U

3 CO N T I N U E
C E Y I T D A LL NOUE S HAV E REEN LABE LEI )

- - .
5 ~~~~~~~~~~~~~~~~~~~~~~~~~ 5 .

— -5-S



H SET: N SFT S I 51
1Fv~sE1 .EO ,NODE ) GO 10 15

12 E~~A(U )
C N~E C ~ IF  A LL A R CS o U T  oF U HAV E bEEN SCAN NE D

1F(E, FO ,~~) l,1J TO SB
C SET  . E Q UA L  T O T H E T O NOU E A~~t) U P D A T E  P O I NT E R  A ( U )

I F ( M .G T ,~~ ) r,rJ T O  3q
C TH IS IS THE LAST A R C O UT OF U

u ’ : —  .~
A (II )
GO TU ~~

39
C IFS IS THE NE~’ D i S TA N C E  TO w FRO ’~l Li V IA THE ARC (uj ,w )

TES :LCfl +~~(J)
C C HE C ”~ IF A RC IS 1HPRO ~~I~JG . IF hOT G ET N EXT  AR C OUT Of ti ,

IF O (~~
) ,LF ,T F S )  ç,í) T~ I ?

C GE T T F T S M f l L ) C L H A X )
8 Y : T E S — L E V
9 I F ( Y , L E , L H A Y )  GO T f l  ~~

V — L ~ A Y
GO T~~ 9

C A R C  (I’ ,u’.~ IS  A N  I’~PRo )vI~JG AR C ~!TH REDUCE D SHORTEST DISTANCE
C IFS A~’J L~ V = T E S  ~1O D ( L ~~A X )
C PuT T~~1S A HC P- FIRST FREE L O C A T I O N  A N D AO l) T O 8EGINNIN G Of
C LIST V A N I )  t I POA TE PREDECESSOR A N D  D ISTANC E

I: IF
I F R E E : S (  I )
s UT :x
1 (I) :u~

~i (  I)

11 D(~~~:TES 
- r.

ME~~~1
C END CF S C A N  QF N L .~~ Y LAHE.LED NODE
C *~
C GET NE X T A R C (hi T OF PREDECESSOR NOOF - ~~1 /
58 0:111
38 E :A(tj )

C - CHE C~c iF A LL A~ C5 OUT OF L I H A V E  f 3EE N S C A N N E D
IF (F ,Fo ,~~) G ü TQ 52

C SE T ~ € O U A L  10 T H~ Tfl— NOUE AN D UPDATE POINT ER A C U )
. r E )

GO TO 53
C TH IS TS THE LA ST A PC O UT OF Li

A (U):(A

G~ TO 5~4
53
C TES IS THF ~~~~ D I S T A N C E  T O  w FROM U V IA THE A R C (U , W)

5~1 T E S : L ( f ~~ s O ( t I )
C C~~F C~ I F  A RC 1s IM PRr u~~ING . IF NOT GE T N EX T A RC OUT OF U ,

~,(j T O .ft~
C G E T  T F S  M f l D ( L~~A X )

V z IF S .  L. F V
55 I F ( y , ( € ,L M A W )  D O TO 5h

Gu T o  55
C A R C (II ,.) ~S 

AN I~~PR(JV I N G  A RC W ITH REDUCED SHORTEST OTSTANCE

C I F S  A N O  Y = I F S  f . ’ O r ( L MA X )
_______________ - — ‘- - . _ : - —



52

C Pi l l TI4 IS~~A RC IN FIRST FREE LOCATIO N AN D AD D TO BEGINNING OF
C LIST V ANt) U PDATE PRF I ) ECE SS O R A N D D I S T A N C E
56

I: IF
IrREE = scl ,
5(1 )
1 (I) ‘

K(y )~~I
0 1 ) = I ES
P ( A )  ~u

I
C E~~D CF SC A P’ ~F PREDECESSOR NODE

C
52 CO NT IN UE
C GET NEY T NODE liD bE SCANN ED OFF OF LIST Z
13 I k(Z)

IF (t .NE, ô) GO TO 1(4
1:1+1
IF ( 7 . L E ,L M A X )  GO T O 13

C EXIT IF NO IH PROVIN G ARCS FOUND UN THIS PASS OF LISTS
IF (HEM ,EU ,v1) (“0 TO is

C SET LIP FOR NEXT PASS OF LISTS

LEV LE V4 L P~AX
Z:I
GO TO 1.3

C RE M OVF A RC (H(I) ,T (I)) FOR LIST Z AN(1 RETURN LOCATIO N I TO FREE

C U S 1

1”
S (I ) IFPEE
1FREE: I
U:T ( I)
j lJ :H( I)

C IF SHO RT E ST DIS TA N C E HA S  SEEN DECREA SED CAN t ) PREUECESS .i R CI~ANGEO),

C SCA N ONLY THE p~~ r)ECESSOR NODE
jF(Iu,FU,P(t )~ GO 1 0 3
G0 TO 5R

15 C O NT I 1~UE
RE T u R N
END

0

,; ~~~~
.-

- . -



S UB ROUT INE C2
C
C C? Fj~ -flS T HE: SM O R T ~~ST P A T H 5  TO A L l  NUDES FROM THE Rfl~ T ~
C FOR T~~F FT .~OH~ DF~~IP .1.u bY THE A R R A Y S  A, N , 4~~’) L ,
C IT p E TuR ~,s T~~F S u O o . T E S T  P A T H  TREE IN T H E A R R A Y S  P A ND 0 ,
C A LL V A R I A B L E S  IN C~ A R E  T Y PE  IN T E G .

C
C DF~~IN T 1 1O N  OF V A R IA B L E S
C
C ~A R I A R L E  LEN I,TH IF
C N A M E  A N  A R R A Y  M E A N i N G

C — e a a a S S e — — S S ~~ 5 e — S

C
C NODE NUMBER OF NODES I’J THE NET ~~L3 RK
C P T HE ROOT NO DE
C I~~F P O S I T I V E  CO l~S T A N T  GR EATE R THAN ANY

c P A T H  LE~1r~T H ( I, F . + I N f I N I T Y )
C N NO, oF AR CS L IST  OF T O — N O D E S  OF T HE A R C S  jN THE

C P.JET A O R K  IN OR DE R HY FHOM NODE
C L NO, OF ARC S A RC LENGTH S FOR THE A RCS Z N N

c A NODEs! ENTRY P~~T~~1s I ’ J T O  N A ND L
C A d ) POII~TS TO T H E FIRST ARC OUT OF
C NOD E I FOR j :I,2,.,,,t O U E
C A (N+1) IS I PLUS THE NUM BER OF A RCS

C P NODE PREDECESSORS OF T H E ‘JO() ES IN T HE SHORTEST

C P A T H  T P F 1~
C 0 NODE LENGTHS fl& THE SHORTEST PATHS
C CL NODE QUEUE OF NODES 10 BE SC#~JNF O
C

CO MM ON NOD E, R, N (  12A c- i ),L ( I2~,u’fl ,
A( l~~I),D

( 1~~1),CL ( 1~~1)
COM M ON P ( I~~I),I~~F
INTEGER 0 , A , C t . ,P,~

C
C IN I T IA L 1 Z A T I O P

DO 1~~ I:1 ,~~oOE
C SET D I ST ’ ~~C ES T O IN F I N I T Y , C L E A R  PREDECESSOPS AND UUEUE

O (I) : I F
P (I):~

I&~’ø CL (I ):.l
C SET D ISTANCE OF ROOT T~ ZER O (~~

-
~

C SET QU EuE TO C O N T A I N  O NLY RO UT R “

CL( R):INF
I:R 1

C 
-

C M A IN LOOP OF ALG()Rl T(-4 l

C
C SCA N THE A RCS O UT 0F POD E I — ARCS MI) TO A( I+I).1

12& ~ 1A : A U . 1) ~~I
IDtO (I)
I A I :A (I ~iF  (IA ) ,liT .I A)  GO T O 2i~1
D’~ 2~’~ t k: IA I, X A
K s N ( I R )

C COPiPtjyE flI STA~’C! TO NO’)E K U S I N G  ARC (I, K)
KD:!D.L (

C CHECK FØw DEC REA SE IN S H O R T E S T  O I S T A P 4 C E
C IF NOT J P ’ PRO VIP : r,, (~€T I E X T  A RC

IF  (~~D .r,E,r ( K ) )  GO T O  ~~i~’

C DEC R EA SE OF SHORTEST U IS TA J C E S RITH AR C (I, K)

— — - - --—— —- 5--- — —



54

C UPDATE PREDECESSOR AND SHORTEST DiSTANC E

D (K~~:KD
C CREC )~ OIIEI ,E STATUS OF NODE K

IF (CL (~~)) lb~
),1’~

).2~~
C NODE K HA S N EV E R  P3f FN SCA ’4PIED
C A DD NODE K T O  E N D  of U ’ I E U E  AFT ER NODE NI
1(1 1I4 C1(NT):~

C M~~K~ NO D E ~ N EW END OF QUEUE NT AN D FLAG A$ END OF QUEuE
NT I(
CU (K) INF
GO T O 2~~

C P-J O DF K HAS AL R EA DY BEEN SCANNED

C A DO NODE K TO BE &1N N IN G  OF QIJEuJE JUST AFTER NODE I

1b~ 
C L ( K ) C L ( T )
Cl I ) :K

C NODE K I~ ON QuEUE
2~~~~~ CO NTINUE

C GET N E X T  NUDE I FOR BEGINN ING OF QUEUE
201 X C L : C L I I )

C FL AG NODE I AS HAVI N G BEE-N SCANNED
CL(I):— 1
I ICL
iF (I , L T ,INF) GO TO l?~

5
C
C END OF THE AL r,OPITHM
C

R E T U R N
E N D

9-

I-.-

4z~ 
-

- ~~r~~— ’ ~~~~~~~-- ~~~~~~~~~~~ —



I ~~V 
—

C
C G R iD  NETr ~Q R K  SHORTEST PAT H TEST PROH LFM GENER A TO R

C
C G E N E R A T E S  MUL T IPLE O~~Io - -sF TWDR ,S S W I T H  S P E c I F I E D  D I I F N S IO NS  A N D

C A RC L E N G T H  R A N G E .  E A C H  PROHLF~’ IS F-O LLD MED ~jY A LIST OF NUDES

C P.HICI-1 CA N RF USED A 5 THE R1I~~T ‘~0DE ,
C PPO P-L F fr S AMf ~ 

(;E E R P l F r ~ ai~ TAPE 2.
C
C INPUT ( F RO M 5TA ~if~A RD SYST EM INPUT DEV ICE )

C
C RECORD I — RA~.O OI~ N4i ’IBEP SEED (F 1P~.1?)
C RECO RD 2 — (‘115)
C MM — N(J HHFR OF RP~ S IN G RID
C — NIJU MER nF C O L U M N S  I~. GRID

C PIAVC • A V E R A G E  A R C LE~~CT H , ~RC LE NGTHS w ILL RE b ETW EEN

C ~ 
ANT ) 2*’~4vC

C NROOT — f-.tJ M~3 E R ~~~~
- NUDES IN THE ROOT 400E: LIST

C RE COR D 3 T~~PU RECUR 0 ~ 
— NODES TO ~E INC LUDED jN THE R O O T  NO D E

C LIST . FROM (I IT) r f R O O T  NODES CA N ME SPECIFIEr ), IF
C FE~~~R TH4N NP~IO T ~Ot) ES A R E E NT E RED ,  THR P-~P U T  LIST IS
C TERMI NA T F ’J M Y  E~~T ING A ZERO . NTJL)€S A RE G EN E RAT ED
C RAN DOM LY TO CT)~ PLE TE THE. LIST ~F Cl OT NO DES,
C F O R M A T  IS (15).
C
C ~ F C O~~OS 2 T H~~U ~ CA ~ HE REPEATE D FUR A 5 frA~~Y PRO~iLE~~S A S DtSI~~EO ,
C IhE LA ST pR (flaLE.M IS FOUL u~~E0 B Y  A hi  aN ~ RECOR D .
C
C
C PROBLEM F ORMAT - 

-
C
C A LL RECORDS A P E w R I T T E N  W I T H  A ( T h I S )  F O R MA T
C
C 1H~ PROBLE M FILE CAN C O N T A I ~! Mo RE THA N QN E Pp~O B LEM , W I T H I N  EA C H
C PROb LEM ,
C
C C ARD I CON TAINS THE TO TA L 0UH PE P OF NODES, THE NUM BER OF ~ C - ~S
C jN THE GRIT,. THE NUMb ER OF COLUMN S IN THE

C GPI D, IPl E T OT A L NT ) M H t R  OF £4(.S, THE £VER ~~GF

C A RC LE NGTH , Ni~~~~ .R OF NUDES IN TH E L i S T  OF
C ROOT NODES
C
C THE A RC DATA FO LL O YS IN SETS Of CAR D IMAGE S . EAC H SET DESCM IP3ING

C THE AR C 5 OUT OF A GIV EN ~r~DF , THE SETS G I v E  THE A~~CS OUT OF

C N~UDE I , ~j~ i’F 2. ,,,, NqO~. ~, rN ORDER , THE LA ST SET IS FOLLOY.ED
C by A HLA NK R E r U R D ,

F c “ IT M I N  IHE 511 OF ~ A~~f) IMAG ES I E F T N I N G  THE A R CS OUT OF A NUD E ,
C CA ~~D 1 G IvES THE t~ 1 P ~ P~ ER OF A R C S  OUT OF THE NOOF

C C ANT) 2 GI V ES I i-~ ~r j  NJ1~~S Ffl~ THE SE A RC S
C CARl ) 3 G I V E s  THE A RC LE~~G THS,
C C O J T AIN S ZERO . CA R DS 2 A N D 3 A RE OM iTTED ,
C FOLLO ,~ING THE A R C DA TA IS THE LIST OF ROUT s—OD E CA N D IDA TE S , ONE

C PE W RECORD W ITrI THE LA ST ENTRY PEIN (’, FOLLO~ EO MY A flLANK REC O R D .
C
C THE LA ST PROBI.EP IN THE FILE IS F C 1L L O W E ( )  BY A SECON’) BLANK RECORD .
C

COMM ON TT0~ a), 101ST (a)
W E PI NT) 2

C Ei~T E~ Q A NDTJM Pi UM M EW SEED -
PFAI ’iI ,l ’ -I ) SE-EC-

‘~~1 FO W W AT(F I~1,1~~)

- - —5- -— ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ .- _ _i__ _ - — ——— -5— -— ,—-—



56
C ENTE R PRO~ L(M PA RA ~.ETERS — NU MM E R OF RUM S A N D COLUI~NS IN GR ID,
C AVERAG E A RC LEN G TH , NU~ R1P OF ROOTS Tfl BE G EN E RATED
C ~( ANiç RECORD TE RM INATES INPUT
jø R F A 0 (l ,l~i~i ) HH ,f’J N , N A V C , N W O O T
I Ø D  FONMA T( lb I5 )

C ALL PANF( SEEO )
C NOcI~~ is TOTA L ~uM~,E R OF ‘lODE-S

,
C NA RC 1~ TO TA L N I ) M ~,ER OF AR CS

C p~P I T E  P R O B L E M  H E A D E R

~~_i~-i C NODES = ~ Is T RA IL L~
WRI TE (?,1~i~ ) NUDfS ,

M M ,NN ,NAW C, NA V C ,N R O O T
IF (MM .EQ.~~) STOP

• -~ C RrP~~AC E A V ERA G E LENGTH A T T W I C E  A V E - R A G E  LENGTH
~~~— C A1.L A R C LFN (;THS P.ILL FROM I TO NA VC

N A V C 2*NAVC
• C NA RC COUNTS THE TOTA L NUMBER OF A RC S

C G E N E R A T E A R C S WiT 0F NOD E AT GRIt) PO S IT ION (M ,N) R EGINNING W I T H

~
. ‘

~~~ C (1 ,1) A ND GO ING AC ROSS ROW S

~:~.-1 C I IS THE NODE. FiU~1~~E R (I TO M M *N N )  FOR THE NODE AT (M ,N )
M:N:I l

2
K r H—i

C FOR NODE ( M ,N )  ~~~ERA TE AR CS TO NODES ABO V E AN D bELO W
DO I J : 1, ,~

C SKIP A RC IF ‘U’ NOt)E 15 OFF GRID
IF (K ,L.T ,i ,ON , K ,G T , M14 ) GO TO

C NA C O U N T S  A R C S  OUT OF Nr)UE ( M ,N)
P1 A N A  + I

C ITO IS Tu NOUE 
-

1TO(NA) (k l)*N~4+
N

C 101ST I~ A RC LEN (,TH P4ETME EN 1 AND NAV C
1D1ST (NA ):NAV C*RAN F (~~)+1

I K Pci2

C FO R NODE (P’,N )  GENE RAT E AR CS TO NODES TO LEFT AND RIGHT
00 3 ~~~~~
IF(R .LT, I • OR , K ,G T, N PJ ) GO TO 3
NA: N A +

~
ITO (NA) : ( H . j )
IDIST(M A ) :NAV CA RA N FC Y fl+1

3 K :K4?
C w RITE OUT t1iI~ I’EW OF AR CS

,~R I T E ( 2 , 1k1~j )  ‘iA
N ARC : N A R C  + ~, A
IF (NA .Eo,~~) GO T0 ~a

C ~~ IiE- OUT TO NOfl E S A Nt ) LENGTHS OF AR CS OuT OF NODE I
C SKIP if NOP E

W R ITE -C ? . hid) (ITCj (K1 ,itrI ,N 4 )
WR ITE (2,1 004) (jDI S T (

~~
) ,K:i ,N A )

C A D V A N C E  TO NEXT NODE
a 1’I+i
C CHECK IF r)0P4f

IF 1. G T , N O O E S )  Go T O 5
C MOVE TO NE*T COLLJMI.

NI N + I
1F (N.LE.NN) GO TO 2 

- . - -



57

C HOVE T O  N EXT R OW
P U : )
M r ii + I
GO TO 2

S
C ~E A O  N E X T  NUDE TO BE INCLUDED IN ROOT NODE LIST
7 W EAO (I ,Ii ~-~) ~,R
C 7F 40 I L R M I N A 1 I S  INPU T DF SPECIFIED ROOTS iF FEWER THAN NROOT
C ‘~‘D O F S  AR E ENT ERED .

IF (NR ,ED ,~’) GD ‘T’ b
C NODE EN TERE D ~T)ST ~~ O IS T I P J C T FROM PRECEDING ROOT I~

J LIST
IF (NR ,E0 ,LW ) ~u T O ?
w R 1TE (2, i~1r) NW
LP:NR
N R O O T : N R O O T — 1
GO TO 7

C STOP A F T E R  NROO T ~ii jDE S HAV E BEE P~ ENT E R ED
o 1F( NMOOT.LE .~

.) GO TO R
C GE,~E WAT E  PEMAI ,ING ROOTS RAN DOM LY ,
9 T :RANF(i )*NODIS .1

IF~~I ,GT .;-JflDFS~ Gu T O 9
C NODF GEN ERA TE D M

~,ST ME DiS TINCT FROM PRECED iNG ROOT IN LIST
IF (I ,FD ,LR) G0 To 9
.iHITE (2,1- ~-1i~I) I
LW : I
NPOr~::~~W O f l T a I
GO TO 6

C w R I T E .  OUT NEXT ROOT NJODF 7;’ ..
C NP:~ T ER M INA TE S LIST ~~~~~~~

8 v 1 P I T f r ( 2 , I ~~~1) N W
PR I N 1 l , NODE S , N 4R C ,MM ,NN ,N A V C , NR OOT

GD T O  )~~ -

END ~•-

-4 /.

- _ ,  _ _ _ _ _ _ _ _ _ _ _



58
C
C RANDO M N fTWORK S H O RT E S T  P A T H  T E S T  P R O A L F H  G E N E R A T O R

C
C G F N I M A T F S  MULT IPLE PA ’~1)~~M NE TM O RM S ~I TH SPEC J~~IED l)E~~SI TIES A’~D
C AR C L E N G T H  R A N (~F5 , FA C H  PROd LE!4 IS FO L L U~~ED MY A L I ST  OF r. f ) I ) ES

C ~P-lJ C H CA ~ bE USFI) aS THE ROOT NODE ,
C PPIJBL FMS A RE GEj~F P A T E O  ON T A P E  1 ,
C
C iNPUT ( FRO M S T A N D A R D  S Y S T EM INPUT D E V I C E )
C
C RECOR D I — R A N D O M  PJ1 I’4 P3ER SEED Ft~~,t~fl
C R ECO RD 2 (‘475) -

% C N a NUM M EW OF NO DES IN WR O R L EM . ZERO TE RM INAT E S I’~PuT

C — A V E R A G E  NUMMER OF a R CS L E 4 J I ’ ” ~’ EAr k NODE, E A C r I
C NOO’~ ~ ILL HAV E fRU ’~ .~ T O  2*l~ A N AR CS ,

C N A N ‘-~UST NOT ME G REAT E R TH~~ -. r~ / 2.
C LAVE A V E R A G E  A RC LENGT H , A R C ~Fr~.~,T HS wI LL  BE CiET W EE N
C I A Nt)  2 * LA v F
C NRO~~T NUM~~I4  OF NUDES ~ N IHF ROOT NODE LIST
C REC ORD 3 T r4~ u PEC nR ’) K — NU’)ES Tfl HF I~.CLUI)1D I~ T HE P00 1 ~nnE

• C LIS T .  FW f l~’ ~ TO ‘j RuOT ~,nr~E S  CA N  ~E SPECI F IED . IF
C FE -M EW THA N ~iW U O T  ~iUU ES A PE  T ERE. t ” . T M E I n P u T L I S T  IS
C T E RP~I N A T 1I) MY FNTE R P. G A ZE R O , N OD E S  A R E  G E N E R A T E D
C RAN DOM LY TO CU~ P1E TF. THE LIST Of NNOOT NODES ,
C FtJRPP A T IS (IS) ,

~ C RECD~~)S 2 T HRIJ  K C A N  BE R E P E A T E D  FOP A S M A P ,Y PRO~~LE.A S AS DES IRED ,
- C TH E LA S T  PROMI IN IS FhLLII~lIT) RY A BLA N K  R E C ( J R I) ,
C
C
C Pwo8iF~i F O R M A T

C
C A LL PFC O R DS A R E ~R I T T E N  M IT H  A ( I b IS )  F O R MA T
C
C THE PRUA LEM FI LE C A N CON TAIN MO PE TMA N O r E PROb LEM , M I ’T H~ ~ACH

C P R O b L EM ,

C
C C A R D  I CON TA I N S  T HE M U M M E R  OF ~rOE5 , A v E R A G E  LE IGT H OF EACH

C A R C, A V E R A G E  N IHt’ Ek OF A~~C5 LE. A~~ING ~ A LH NOt ) E,

C N (JMHE-R OF NUDES TO B~ uSED AS ROUT NOD~ S,
C
C THE A RC D A T A  FO L L r)~~S IN SETS OF CARD T p.qAGF S, EA C H  S E T  D E S C R I - i T - ~G
C THE A R CS OUT OF A GIVE N NODE, T HE S E T S  t ; Iv E T~l~ A R C S  OUT UF

C PI ODE I. NODE 2. • , . , NO DE N , IN  OPU FR , T H E LA S T  S ET IS FDLL~)M ED
C BY A M LAN K PE-CO PO ,
C W I T H I N  THE SET OF CA PO IM A G E S  OE FT ?PG THE A~ C5 O t T  OF A NUDE-,
C CA R D  1 G I V E S  THE ,‘i~~~~P OF A ’~CS C~~T iF THE ~flDE

C C AWI ) ? G IV E S  THE TO NII’)IS FO R THESE AR CS
C CAR D 3 GI~~~~ TH E A R C LE\( IHS,
C I~ CA ~~) I Cr i r TA ) ~S ZERO, CA R DS ? .~ ND 3 APi OMI TTE D . If C A P ~D I
C I N D I C A T F 5  ~ORf T H A N  ~~ A R C S ,  CA R D S  ? A~O) 3 A RE REPEAT E D A S
C NECESSA RY .
C FOLL OWi N G 7H~ A RC D A T A  1$ THE LIST OF P4001 NODE CA N DI DAT ES , ONE

C PER RECORD w i T H TH~ LA ST EN T RY BEI r ~G l-(l LLO~.ED b Y A M L A N K  Rt C UW D .
C
C THE. L A ST Pk()~~LEM IN TME FIL F IS FOLLOvED BY A SECOND BLANK RE-CORD,
C

LOGi CA L OPIP
r ) I P P FN SIO N NLISTf l,4),NDT5T(5V’P) ,0IsP(2S~ (A)
REM I ND I

—5-—- -——--5..— —.~~ ~~~~~~~ —.-~~— - S



59

C E N T E R  R A N D O M  N U M b E R  sE€O
R E ADo ~ .i,5f ~ 1)

~~~~ F O~ MAT (F I • 
1 u- u~

I CA LL R A PF (S 1P 1))

C E N t E R NUMHEP (IF NODES. A V ERAG E NUMBER OF ARCS PEW NODE, AV E - RAG E

C A R C L E N G T H , 6 N f) N U H ~~FR Of R O O T S ,
READ Sv~c~,N ,~1A N ,LAV F , NROOT
IF(N ,LE .(’~) (,u TO 2~~i

K K :K
IT I (1, SA ~i) N ,N A N ,L A V E ,N ROOT

C G E N E R A T E ARC D A T A

DO ‘4~~ I= I ,N
C D(JP IS A LO G ICAL A R R A Y SUCH T H A T DUP(J) = ,TRUE, jF AN AR C FORM

C NODE I TO NJ(J E J HAS ALREADY BE-IN GEN E RA TED AND ,FALSF.

C o T h E R~~lSf ,
00 ‘41 J :L, N

Ill DU P tJ) .FA L SE.
H H :2* W A ~a F (~~~) * N A N + ~ • S

R N

C IF THERE A RE N O A RCS 0111 OF NODE I , S K I P TO NODE AND ARC LENGTH
C G E N E R A T I O N

If (P~M ,FO , ~~ GO TO 4~A
K = ~4 H

C GENE RAT E A R C L E N G T H S FOR THE K ARCS OUT OF NODE
DO 5.~i J:1,K
ND i S T (J) : 2 * LA V E * W A N F (~i)+ 1

50 CN~T1tJUE
DO ~~.-i L= 1 ,~
Y = PA N F (r ~)

C LI IS NE XT Tü NODE U •

L L = N *Y +1
~~~~~~~~~~~~~~~~~IF(LL, & T .N) L L N  ~~

&_I
~~ ._~Lfr  /

C CHECK FOR ARC Dt IPL ICA T ION ~ L.Ui ~r
IF (OUP (LL )) GO T~j ~ I
OUP (LL):.TR (’E.
NI 1ST (L):LL

P.~ CONTINUE
4t~ COt’~T 1 P ~UE

C M PITE OUT T~ ~d,DES AN D LENGTHS OF ARCS OUT OF NODE I
MP ITE ( 1, S~~’) ( N L I S T t J ~~, J: I , K )
wPITE (1 .Sc~,l ( N I ) I S T 1J 1~~J~~I , K )

~~ Cn~- T I~~UE
5~~ F ORHA i (Ie IS )

C ~ IS TOT AL NUHM IW OF A RCS
K 1 ’  K
PRINT 5~~I ,N ,K ,NR DOT ,LAV E

501 F O R M A T ( t P 4 C~, 4 4 I 1 I l )
I Ri

C II~ AO N E X T  PiODI TO ME - INCI .(IDFD I~: ROOT NODE LiST
S kEAD SOt~,NR

I sNR
IF NR,~~E.~~

) GO T~ q2 

-~~~~~ ‘~~~~~~ -T ~. . T.- ~
—‘- 

~~~~~~~~~~~~~~~~~~~~~~~ 
- — ~~~~

- —-- - — --
~~ — -

60

C 7F~~ TE RM INAT E S INPUT OF SPECIFIED ROOTS IF FEM ER IRA N NROOT

C Nfl DE S A R E EN TE RE D.
C GF~~- R A I F R 1 M A I ’~J lr ~G ROOTS RANDO M LY .

I:R A NF (~’)*N+1
- iF (I,GT ,~i) ~~ TO Q’4

C NODE GENE RAT E D MUST ME. D ISTIN CT FROM PRECED ING ROOT jN LISI
Q2 I F I ,E1~.LR) Go Tü 93

wP1 TE (1, S~ic’) I
L R:I
NPOOT:NWOOT— I

C STOP AFT E R ~‘~~
(
~UT NODES HAVE bEEN ENTERED

IF(NROO T .LE. h;) G~
y f l o5

93 IFV ~.R ,G T ,~~) GO It) 5
GO TO 9~

C W R ITE TRA ILER RECOR D F0p ROOT NODE LIST
95

•
j=~
W R j T F (1 , 5~iE~) I
GO TO I

C WR I T E - T RA IL ER RECOR D F0P FILE
20~

4 ~~~~~~~~~~~~~ N
S _ T O P
END

C L)

Lj . t

~~~~ 1

I—



Unclassified
~~

- uri R - 
~~~~~~~~~~~~ ____________________________________________________________

DOCUMENT CONTROL DATA . R & 0
S.,,~ I.a f ,on of lu,. bcdp of .bal,.r and “ d.. n~ .~~~‘ - , ,- ,,, , ,.~~~~~~~l . th. .~~ -~a!l ~ap or u, -?an.lfI.d)

I. . . A T 1 (. A c v i v e t . (Covporaf • •uth Or) f~~~~c . t i o v S I C j P T ~~ c L A S S I F I C a T I O N

Cente r for Cy bernet ic Studies U n c l a s s i f ied

The U n i v e r s i ty of Texas

~ 1 _ _ _ _ _ _ _ _ _ _ _ _I •E P O f l T
A ‘omputat ional Anal ysis of Alternat ive A l go r i t h m s and L a b el i n g Techniques
fo r Finding Shortest Path Trees

rn O I I C a o t . S N O T I S (7 Vp. Of~~Sp tI’~~fld.lflClOIlI’~~ d f ~~I)

..O~~~3I (pr~ .t n.m., middi. lnSfl.l. Ia.t Siam.)

Robe rt Dial David Karney

Fred GlovE r Darwin Klingman

• •CPO~~t O A T S 7~~. T O T A L NO OF P A G F S S. NO OF R E F S

Apri l 1977 60 j 24

S. C O ~~~T~~~A C T O~~ G R A N T NO. •.. O~~ I G I N A T O S N t P O~~ t ~~~~~~~~ ~~~~~

~~~~~~ ~~~ P~~ T
756o~

52569 ’°616 
~~~~~

. Center for Cvberns~~ic- S tu lif- s

b. ~~~ O .J(CT NO Researc h Repor t CCS 29 1 ,.

NR047—O2 1 __
C ~b. 0 Y N S O R E POm T NO 3) (An T offi.~ n .b.,S ma t m.~ b. ...1 ,.d

thia r.porl)

d.

0 O I$ T ~~ I S U T IO N 5 T A T S M S N T

This document has been approved for public release and ‘~i lt- ; i t. ~
distribution is unlimited.

I I . SU P P L SIJEN~~ * N Y N O T E I 12 . S P O N I O R I N G M I L I T A R S

Office of Naval R&~~~arch (Code 434)
Wa shington , D .C .

I) A S S T ~~ A C T

This paper examine s different algorithms for ca l cu l a t i ng the shorh ~~ t p a t h
fr om one node to all othe r nodes in a network. Mo re spec i f i ca l l y, we - * k t
advanc e th e s t a t e -o f-the-a r t of computer imp lementat ion technology for such
algorithms and the prob 1em~ they solve by examining the effect of innovati ve
compute r science list structures and labeling techniques on algorithmic performance

Th e study shows that the procedures examined indeed exert a p ow e r f u l
influenc e on solution efficiency, wit h the ident i ty of the best dependent upo n
the topology of the network and the range of the arc distance co fficie nt~ . The
study fur ther discloses that the shortest path algorithm previousl y doc um nted
as the most efficient is dominated for all problem s tructures by the new methods ,
which are sometimes an order of magnitude fas ter .

C

’

‘°~~~ 1 A 7’ ~~ (PAGE I)
~~~ I NO~ ••~ . Unclassified

S/N GI O i-e :7-6811 

-

~~ S.curtty CI.usIC*C.t
~
Oi
~ *a40s 

-



t ne I a ~ s i f i  e d
Security Claqa i( ieat io r i  

________________ _________________

L I~ J T  A L~~~P d T  B L I N T  C
T F ~~

R O L E  Si T R O L E  S i t  C~O L E  *~~

‘~h r t e - ~t p a t h  prohlen~s

C om p u t a t i o n al  t e~-~t 1n g

l in ear  P r o g r am m in g

Lah e l  -~~t t  ing a l g or i t h m s

I ahe 1 i or rec  ting algorithms

D D PORN I A ~~~~
‘No v .. i~i ~ 

oACK Unc lass i f ied
S/N 0102-01  4 - 4 1 0 0  Se. un Iv Cl .s.ificattOn 5 . _ I ,

_____________________ ____________ _______________ a

~

. . - . .—- 
~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - . — . 

T



V

I
\4

0 ’ ~~~~

‘/7



/

1



A0%* 118 TEXAS LRIIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES F~6 q/2
A COWUTATIONAL ANALYSIS OF ALTERNATIVE ALGORITHMS AND LABELINC CTC(u)
APR 77 R DIAL. F GLOVER, D KARNEY , D KLINGMAN NOoo1l3—75—C~ o569 -

MCLASSIFIED CCS—291 p4. I

I
— I



A
4 4



- -  -~~~~~~ - - - - 
.-

~~
-.———

~~~~ ~~~~~~~~~ 
w~~~~

__ - __,_~,___ __ ~ ~~—-

~~~~~~~~~~~~~ 

-.- -..,-

~

,---. ------

~ 

-

~~~ 

‘—V— ,

SUPPLEMENTAR~I.

INFORMATION
-- --.—p.~~~~~~~~~~~

- -- . .— - -- ~-—- — - - .-— -
~
--

~~~
- - -



~~~~~- - ~~~~~~~~~ “T

_ _ _ _ _ -

~~~~~~~~~~~~~~
‘
~~~~~ ‘ ~~ CCS 291

= I (“~
REPLACEMENT PAGE

-

I January 18, 1980

-I.
C UPDATE PREDECESSOR AND SHORTEST DISTANCE

P(K)zI
• D(K) =KD

C CHECK QUEUE STATUS OF NODE K
IF (CL(K)) 160,140,200

C NODE K HAS NEVE R BEEN SCANNED
C ADD NODE K TO END OF QUEUE AFTER NODE NT
140 CL(NT)=K

MAKE NODE K NEW END OF QUEUE NT AND FLAG AS END OF QUEUE
NTzK
CL(K)= INF

C NODE K HAS ALREADY BEEN SCANNED
C ADD NODE K TO BEGINNING OF QUEUE JUST AFTER NODE I

~~~ 160 CL(K) = CL(T)
CI.(11 K
I ~ NT. I~Q I ) NT 1~

C NO1)L~ I~ IS ON QUI~IJI~200 CONTINUE
C GET NEXT NODE I FOR BEGINNING OF QUEUE

201 ICL~CL(I)
C FLAG NODE I AS HAViNG BEEN SCANNED

CL(I)~ -1
I-ICL

- IF (I,LT,INF) GO TO 120
C
C END OF THE ALGORITHM
C

RETURN
END 

~~~ • ---~~ ••-~~-


